The mitochondrial unfolded protein response (UPRmt): shielding against toxicity to mitochondria in cancer

Hartwell LH, et al. Integrating genetic approaches into the discovery of anticancer drugs. Science. 1997;278(5340):1064–8.

PubMed  Article  CAS  Google Scholar 

Luo J, et al. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136(5):823–37.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Vyas S, et al. Mitochondria and cancer. Cell. 2016;166(3):555–66.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

PubMed  Article  CAS  Google Scholar 

Bigarella CL, et al. Stem cells and the impact of ROS signaling. Development. 2014;141(22):4206–18.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Lagouge M, Larsson NG. The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med. 2013;273(6):529–43.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Morrell CN. Reactive oxygen species: finding the right balance. Circ Res. 2008;103(6):571–2.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96.

PubMed  Article  CAS  Google Scholar 

Galadari S, et al. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64.

PubMed  Article  CAS  Google Scholar 

Fiorese CJ, et al. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol. 2016;26(15):2037–43.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Martinus RD, et al. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem. 1996;240(1):98–103.

PubMed  Article  CAS  Google Scholar 

Kenny TC, et al. Mitohormesis, UPR(mt), and the complexity of mitochondrial DNA landscapes in cancer. Cancer Res. 2019;79(24):6057–66.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Naresh NU, Haynes CM. Signaling and regulation of the mitochondrial unfolded protein response. Cold Spring Harb Perspect Biol. 2019;11(6):a033944.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wu Y, et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell. 2014;158(6):1415–30.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Sharma SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007;21(24):3214–31.

PubMed  Article  CAS  Google Scholar 

Fisher GH, et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 2001;15(24):3249–62.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell. 1999;4(2):199–207.

PubMed  Article  CAS  Google Scholar 

Velu TJ, et al. Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science. 1987;238(4832):1408–10.

PubMed  Article  CAS  Google Scholar 

Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science. 2002;297(5578):63–4.

PubMed  Article  CAS  Google Scholar 

Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med. 2011;3(11):623–36.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Solimini NL, et al. Non-oncogene addiction and the stress phenotype of cancer cells. Cell. 2007;130(6):986–8.

PubMed  Article  CAS  Google Scholar 

Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2:17.

PubMed  PubMed Central  Article  Google Scholar 

Haas RH. Mitochondrial dysfunction in aging and diseases of aging. Biology (Basel). 2019;8(2):48.

CAS  Google Scholar 

Kenny TC, et al. The mitochondrial unfolded protein response as a non-oncogene addiction to support adaptation to stress during transformation in cancer and beyond. Front Oncol. 2017;7:159.

PubMed  PubMed Central  Article  Google Scholar 

van der Bliek AM, et al. Cell biology of the mitochondrion. Genetics. 2017;207(3):843–71.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410(2):103–23.

PubMed  Article  CAS  Google Scholar 

Kuhlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13:89.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Meyer JN, et al. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 2017;391:42–53.

PubMed  Article  CAS  Google Scholar 

Lackner LL. Shaping the dynamic mitochondrial network. BMC Biol. 2014;12:35.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Chandel NS. Metabolism of proliferating cells. Cold Spring Harb Perspect Biol. 2021;13(10):a040618.

PubMed  Article  CAS  Google Scholar 

Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.

PubMed  Article  CAS  Google Scholar 

Balaban RS, et al. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

PubMed  Article  CAS  Google Scholar 

Huttemann M, et al. Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta. 2007;1773(12):1701–20.

PubMed  Article  CAS  Google Scholar 

Quinlan CL, et al. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem. 2014;289(12):8312–25.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016;100:14–31.

PubMed  Article  CAS  Google Scholar 

Evans MD, et al. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res. 2004;567(1):1–61.

PubMed  Article  CAS  Google Scholar 

Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010;5(1):51–66.

PubMed  Article  CAS  Google Scholar 

Wei YH, et al. Mitochondrial theory of aging matures–roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi (Taipei). 2001;64(5):259–70.

CAS  Google Scholar 

Alexeyev M, et al. The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol. 2013;5(5): a012641.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Larsen NB, et al. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion. 2005;5(2):89–108.

PubMed  Article 

留言 (0)

沒有登入
gif