CRISPR-Cas systems: role in cellular processes beyond adaptive immunity

Abadia E, Zhang J, dos Vultos T et al (2010) Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method. Infect Genet Evol 10:1066–1074

CAS  PubMed  Article  Google Scholar 

Aklujkar M, Lovley DR (2010) Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus. BMC Evol Biol 10:230

PubMed  PubMed Central  Article  CAS  Google Scholar 

Aliprantis AO, Yang RB, Mark MR et al (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739

CAS  PubMed  Article  Google Scholar 

Babu M, Beloglazova N, Flick R et al (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502

CAS  PubMed  Article  Google Scholar 

Bao D, Ma Y, Zhang X et al (2015) Preliminary characterization of a leptin receptor knockout rat created by CRISPR/Cas9 system. Sci Rep 5:15942

Baranova N, Nikaido H (2002) The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 184:4168–4176

CAS  PubMed  PubMed Central  Article  Google Scholar 

Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

CAS  PubMed  Article  Google Scholar 

Bernheim A, Bikard D, Touchon M et al (2019) A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philos Trans R Soc Lond B Biol Sci 374:20180088

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bikard D, Euler CW, Jiang W et al (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32:1146–1150

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bolotin A, Quinquis B, Sorokin A et al (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (reading) 151:2551–2561

CAS  Article  Google Scholar 

Boysen A, Ellehauge E, Julien B et al (2002) The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 184:1540–1546

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bozic B, Repac J, Djordjevic M et al (2019) Endogenous gene regulation as a predicted main function of type I-E CRISPR/Cas system in E. coli. Molecules 24(4):784

Brightbill HD, Libraty DH, Krutzik SR et al (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736

CAS  PubMed  Article  Google Scholar 

Bruggemann H, Lomholt HB, Tettelin H et al (2012) CRISPR/cas loci of type II Propionibacterium acnes confer immunity against acquisition of mobile elements present in type I P. acnes. PLoS One 7:e34171

Cady KC, O’Toole GA (2011) Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J Bacteriol 193:3433–3445

CAS  PubMed  PubMed Central  Article  Google Scholar 

Canez C, Selle K, Goh YJ et al (2019) Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus. FEMS Microbiol Lett 366(9):fnz105

Cao G, Meng J, Strain E et al (2013) Phylogenetics and differentiation of Salmonella Newport lineages by whole genome sequencing. PLoS ONE 8:e55687

CAS  PubMed  PubMed Central  Article  Google Scholar 

Charpentier E, Richter H, van der Oost J et al (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cheng X, Zheng X, Zhou X et al (2016) Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol 18:904–922

CAS  PubMed  Article  Google Scholar 

Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145

CAS  PubMed  PubMed Central  Article  Google Scholar 

Comas I, Homolka S, Niemann S (2009) Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE 4:e7815

PubMed  PubMed Central  Article  CAS  Google Scholar 

Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cui L, Bikard D (2016) Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res 44:4243–4251

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cui L, Wang X, Huang D et al (2020) CRISPR-cas3 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens 9(1):53

CAS  PubMed Central  Article  Google Scholar 

Ebina H, Misawa N, Kanemura Y et al (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510

PubMed  PubMed Central  Article  Google Scholar 

Endo A, Watanabe T, Ogata N et al (2015) Comparative genome analysis and identification of competitive and cooperative interactions in a polymicrobial disease. ISME J 9:629–642

CAS  PubMed  Article  Google Scholar 

Fabre L, Zhang J, Guigon G et al (2012) CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS ONE 7:e36995

CAS  PubMed  PubMed Central  Article  Google Scholar 

Faure G, Makarova KS, Koonin EV (2019) CRISPR-Cas: complex functional networks and multiple roles beyond adaptive immunity. J Mol Biol 431:3–20

CAS  PubMed  Article  Google Scholar 

Gao NJ, Al-Bassam MM, Poudel S et al (2019) Functional and proteomic analysis of Streptococcus pyogenes virulence upon loss of its native Cas9 nuclease. Front Microbiol 10:1967

PubMed  PubMed Central  Article  Google Scholar 

Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

CAS  PubMed  Article  Google Scholar 

Ginevra C, Jacotin N, Diancourt L et al (2012) Legionella pneumophila sequence type 1/Paris pulsotype subtyping by spoligotyping. J Clin Microbiol 50:696–701

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gomaa AA, Klumpe HE, Luo ML (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5:e00928–13

Gomgnimbou MK, Abadia E, Zhang J et al (2012) “Spoligoriftyping”, a dual-priming-oligonucleotide-based direct-hybridization assay for tuberculosis control with a multianalyte microbead-based hybridization system. J Clin Microbiol 50:3172–3179

PubMed  PubMed Central  Article  Google Scholar 

Grissa I, Bouchon P, Pourcel C et al (2008) On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie 90:660–668

CAS  PubMed  Article  Google Scholar 

Guan J, Wang W, Sun B (2017) Chromosomal targeting by the type III-A CRISPR-Cas system can reshape genomes in Staphylococcus aureus. mSphere 2(6):e00403- e00417

Gunderson FF, Cianciotto NP (2013) The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio 4:e00074–13

Hai T, Teng F, Guo R (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hale CR, Majumdar S, Elmore J et al (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45:292–302

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heidrich N, Hagmann A, Bauriedl S et al (2019) The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells. RNA Biol 16:390–396

PubMed  Article  Google Scholar 

Heussler GE, Miller JL, Price CE et al (2016) Requirements for Pseudomonas aeruginosa type I-F CRISPR-Cas adaptation determined using a biofilm enrichment assay. J Bacteriol 198:3080–3090

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hu W, Kaminski R, Yang F et al (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 111:11461–11466

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hudaiberdiev S, Shmakov S, Wolf YI et al (2017) Phylogenomics of Cas4 family nucleases. BMC Evol Biol 17(1):232

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hullahalli K, Rodrigues M, Nguyen UT et al (2018) A semi lethal CRISPR-Cas system permits DNA acquisition in Enterococcus faecalis. bioRxiv aCC-BY-NC-ND 4.0.2.

Ivancic-Bace I, Cass SD, Wearne SJ et al (2015) Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res 43:10821–10830

CAS 

留言 (0)

沒有登入
gif