Angiogenesis in adipose tissue and obesity

Stieber C et al (2019) Human perivascular adipose tissue as a regulator of the vascular microenvironment and diseases of the coronary artery and aorta. J Cardiol Cardiovasc Sci 3(4):10–15

PubMed  PubMed Central  Article  Google Scholar 

Bradford ST et al (2019) Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Sci Rep 9(1):9511

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zwick RK et al (2018) Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab 27(1):68–83

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ha CWY et al (2020) Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183(3):666-683 e17

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li Y, Meng Y, Yu X (2019) The unique metabolic characteristics of bone marrow adipose tissue. Front Endocrinol (Lausanne) 10:69

Article  Google Scholar 

Tencerova M, Ferencakova M, Kassem M (2021) Bone marrow adipose tissue: role in bone remodeling and energy metabolism. Best Pract Res Clin Endocrinol Metab 35(4):101545

CAS  PubMed  Article  Google Scholar 

Krotkiewski M et al (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Investig 72(3):1150–62

CAS  PubMed  PubMed Central  Article  Google Scholar 

Piche ME, Tchernof A, Despres JP (2020) Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 126(11):1477–1500

CAS  PubMed  Article  Google Scholar 

Smith U (2015) Abdominal obesity: a marker of ectopic fat accumulation. J Clin Investig 125(5):1790–1792

PubMed  PubMed Central  Article  Google Scholar 

Gray SL, Vidal-Puig AJ (2007) Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev 65(6 Pt 2):S7-12

PubMed  Article  Google Scholar 

Dai H et al (2020) The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: an analysis of the global burden of disease study. PLoS Med 17(7):e1003198

PubMed  PubMed Central  Article  Google Scholar 

Larsson SC, Burgess S (2021) Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med 19(1):320

PubMed  PubMed Central  Article  Google Scholar 

Meln I et al (2019) Dietary calories and lipids synergistically shape adipose tissue cellularity during postnatal growth. Mol Metab 24:139–148

CAS  PubMed  PubMed Central  Article  Google Scholar 

Serra MC et al (2015) High adipose LPL activity and adipocyte hypertrophy reduce visceral fat and metabolic risk in obese, older women. Obesity (Silver Spring) 23(3):602–607

CAS  Article  Google Scholar 

Heinonen S et al (2014) Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes (Lond) 38(11):1423–1431

CAS  Article  Google Scholar 

Cifarelli V et al (2020) Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Investig 130(12):6688–6699

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lempesis IG et al (2020) Oxygenation of adipose tissue: a human perspective. Acta Physiol (Oxf) 228(1):e13298

CAS  Article  Google Scholar 

Sebo ZL, Rodeheffer MS (2019) Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development. https://doi.org/10.1242/dev.172098

Article  PubMed  PubMed Central  Google Scholar 

Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4(2):211–232

CAS  PubMed  Article  Google Scholar 

Poissonnet CM, Burdi AR, Bookstein FL (1983) Growth and development of human adipose tissue during early gestation. Early Hum Dev 8(1):1–11

CAS  PubMed  Article  Google Scholar 

Poissonnet CM, Burdi AR, Garn SM (1984) The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 10(1–2):1–11

CAS  PubMed  Article  Google Scholar 

Perez-Miguelsanz J et al (2021) Early appearance of epicardial adipose tissue through human development. Nutrients 13(9):2906

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cho SW et al (2007) Engineered adipose tissue formation enhanced by basic fibroblast growth factor and a mechanically stable environment. Cell Transplant 16(4):421–434

PubMed  Article  Google Scholar 

Han J et al (2011) The spatiotemporal development of adipose tissue. Development 138(22):5027–5037

CAS  PubMed  Article  Google Scholar 

Xue Y et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9(1):99–109

CAS  PubMed  Article  Google Scholar 

Lee YH et al (2015) Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 29(1):286–299

CAS  PubMed  Article  Google Scholar 

Zahalka AH et al (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358(6361):321–326

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tang W et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vishvanath L et al (2016) Pdgfrbeta+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab 23(2):350–359

CAS  PubMed  Article  Google Scholar 

Berry DC, Jiang Y, Graff JM (2016) Emerging roles of adipose progenitor cells in tissue development, homeostasis, expansion and thermogenesis. Trends Endocrinol Metab 27(8):574–585

CAS  PubMed  Article  Google Scholar 

Jiang Y et al (2017) A PPARgamma transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nat Commun 8:15926

CAS  PubMed  PubMed Central  Article  Google Scholar 

Long JZ et al (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19(5):810–820

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tran KV et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15(2):222–229

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hong KY et al (2015) Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development 142(15):2623–2632

CAS  PubMed  Article  Google Scholar 

Gealekman O et al (2014) Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4. J Biol Chem 289(26):18327–18338

CAS  PubMed  PubMed Central  Article  Google Scholar 

Min SY et al (2016) Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22(3):312–318

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tchoukalova YD et al (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA 107(42):18226–18231

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ye RZ et al (2022) Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. Endocr Rev 43(1):35–60

PubMed  Article  Google Scholar 

Zhang Y et al (2014) Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 22(3):691–697

CAS  Article  Google Scholar 

Ukropec J et al (2008) Adipokine protein expression pattern in growth hormone deficiency predisposes to the increased fat cell size and the whole body metabolic derangements. J Clin Endocrinol Metab 93(6):2255–2262

留言 (0)

沒有登入
gif