Deciphering the regulatory syntax of genomic DNA with deep learning

Alipanahi B, Delong A, Weirauch MT and Frey BJ 2015 Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. https://doi.org/10.1038/nbt.3300

Avsec Ž, Kreuzhuber R, Israeli J, et al. 2019 The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. Nat. Biotechnol. 37 592–600

CAS  Article  Google Scholar 

Avsec Ž, Agarwal V, Visentin D, et al. 2021a Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Method. 18 1196–1203

CAS  Article  Google Scholar 

Avsec Ž, Weilert M, Shrikumar A, et al. 2021b Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat. Genet. 53 354–366

CAS  Article  Google Scholar 

Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al. 2010 The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28 1045–1048

CAS  Article  Google Scholar 

Buniello A, MacArthur JAL, Cerezo M, et al. 2018 The NHGRI-EBI GWAS Catalog of Published Genome-Wide Association Studies, Targeted Arrays and Summary Statistics 2019. Nucleic Acids Res. 47 D1005–D1012

Article  Google Scholar 

Cazares T, Rizvi FW, Iyer B, et al. 2022 maxATAC: Genome-scale transcription-factor binding prediction from ATAC-Seq with deep neural networks. bioRxiv https://doi.org/10.1101/2022.01.28.478235

de Almeida BP, Reiter F, Pagani M, and Stark A 2021 DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of enhancers. bioRxiv https://doi.org/10.1101/2021.10.05.463203

ENCODE Project Consortium 2012 An integrated encyclopedia of DNA elements in the human genome. Nature 489 57–74

Article  Google Scholar 

Eraslan G, Avsec Ž, Gagneur J and Theis FJ 2019 Deep learning: New computational modelling techniques for genomics. Nat. Rev. Genet. 20 389–403

CAS  Article  Google Scholar 

FANTOM Consortium, the RIKEN PMI, and Clst (dgt). 2014 A promoter-level mammalian expression atlas. Nature 507 462

Karbalayghareh A, Sahin M and Leslie CS 2021 Chromatin interaction aware gene regulatory modeling with graph attention networks. bioRxiv https://doi.org/10.1101/2021.03.31.437978

Keilwagen J, Posch S and Grau J 2019 Accurate prediction of cell type-specific transcription factor binding. Genome Biol. 20 9

Article  Google Scholar 

Kelley HJ 2012 Gradient theory of optimal flight paths. ARS J. 10 5282

Google Scholar 

Kelley DR, Snoek J and Rinn JL 2016 Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26 990–999

CAS  Article  Google Scholar 

Kelley DR, Reshef YA, Bileschi M, et al. 2018 Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Res. 28 739–750

CAS  Article  Google Scholar 

Kodzius R, Kojima M, Nishiyori H, et al. 2006 CAGE: Cap analysis of gene expression. Nat. Methods 3 211–222

CAS  Article  Google Scholar 

Li H and Guan Y 2021 Fast decoding cell type-specific transcription factor binding landscape at single-nucleotide resolution. Genome Res. 31 721–731

Article  Google Scholar 

Li H, Quang D and Guan Y 2019 Anchor: Trans-cell type prediction of transcription factor binding sites. Genome Res. 29 281–292

CAS  Article  Google Scholar 

Linder J and Seelig G 2021 Fast activation maximization for molecular sequence design. BMC Bioinform. 22 510

Paszke A, Gross S, Massa F, et al. 2019 PyTorch: An imperative style, high-performance deep learning library. Adv. Neural Informat. Process. Syst. 32 8024–8035

Shrikumar A, Greenside P, Shcherbina A and Kundaje A 2016 Not just a black box: Learning important features through propagating activation differences. arXiv http://arxiv.org/abs/1605.01713

Shrikumar, A, Tian K, Avsec Ž, et al. 2018. Technical note on transcription factor motif discovery from Importance scores (TF-MoDISco) Version 0.5.6.5, October. arXiv https://doi.org/10.48550/arXiv.1811.00416

Simonyan K, Vedaldi A and Zisserman A 2013 Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv http://arxiv.org/abs/1312.6034

Vaishnav ED, de Boer CG, Molinet J, et al. 2022 The evolution, evolvability and engineering of gene regulatory DNA. Nature 603 455–463

CAS  Article  Google Scholar 

Whalen S, Schreiber J, Noble WS and Pollard KS 2021 Navigating the pitfalls of applying machine learning in genomics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00434-9

Article  PubMed  Google Scholar 

Yin Q, Wu M, Liu Q, Lv H and Jiang R 2019 DeepHistone: A deep learning approach to predicting histone modifications. BMC Genom. 20 193

CAS  Article  Google Scholar 

Zhou J 2021 Sequence-based modeling of genome 3D architecture from kilobase to chromosome-scale. bioRxiv https://doi.org/10.1101/2021.05.19.444847

Zhou J And Troyanskaya OG 2015 Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12 931–934

留言 (0)

沒有登入
gif