Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin

Gabrilovich DI, Bronte V, Chen SH, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67(1):425–6. https://doi.org/10.1158/0008-5472.CAN-06-3037.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. https://doi.org/10.1038/nri3175.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. https://doi.org/10.1038/ncomms12150.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32(1):19–25. https://doi.org/10.1016/j.it.2010.10.002.

CAS  Article  PubMed  Google Scholar 

Umansky V, Sevko A. Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. 2013;6(2):169–77. https://doi.org/10.1007/s12307-012-0126-7.

CAS  Article  PubMed  Google Scholar 

Condamine T, Mastio J, Gabrilovich DI. Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol. 2015;98(6):913–22. https://doi.org/10.1189/jlb.4RI0515-204R.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ohl K, Tenbrock K. Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front Immunol. 2018;9:2499. https://doi.org/10.3389/fimmu.2018.02499.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 2004;64(16):5839–49. https://doi.org/10.1158/0008-5472.CAN-04-0465.

CAS  Article  PubMed  Google Scholar 

Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31. https://doi.org/10.1158/0008-5472.CAN-05-1299.

CAS  Article  PubMed  Google Scholar 

Kim W, Chu TH, Nienhüser H, et al. PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology. 2021;160(3):781–96. https://doi.org/10.1053/j.gastro.2020.10.036.

CAS  Article  PubMed  Google Scholar 

Grover A, Sanseviero E, Timosenko E, Gabrilovich DI. Myeloid-derived suppressor cells: a propitious road to clinic. Cancer Discov. 2021;11(11):2693–706. https://doi.org/10.1158/2159-8290.CD-21-0764.

CAS  Article  PubMed  Google Scholar 

Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity. Immunity. 2021;54(5):875–84. https://doi.org/10.1016/j.immuni.2021.04.004.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Koh J, Kim Y, Lee KY, et al. MDSC subtypes and CD39 expression on CD8+ T cells predict the efficacy of anti-PD-1 immunotherapy in patients with advanced NSCLC. Eur J Immunol. 2020;50(11):1810–9. https://doi.org/10.1002/eji.202048534.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang D, An G, Xie S, Yao Y, Feng G. The clinical and prognostic significance of CD14(+)HLA-DR(-/low) myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumour Biol. 2016;37(8):10427–33. https://doi.org/10.1007/s13277-016-4916-2.

CAS  Article  PubMed  Google Scholar 

Siemińska I, Węglarczyk K, Walczak M, et al. Mo-MDSCs are pivotal players in colorectal cancer and may be associated with tumor recurrence after surgery. Transl Oncol. 2022;17:101346. https://doi.org/10.1016/j.tranon.2022.101346.

Article  PubMed  PubMed Central  Google Scholar 

Condamine T, Ramachandran I, Youn JI, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 2015;66:97–110. https://doi.org/10.1146/annurev-med-051013-052304.

CAS  Article  PubMed  Google Scholar 

Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 2020;9(3):561. https://doi.org/10.3390/cells9030561.

CAS  Article  PubMed Central  Google Scholar 

Sallman DA, List A. The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood. 2019;133(10):1039–48. https://doi.org/10.1182/blood-2018-10-844654.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol. 2013;190(2):794–804. https://doi.org/10.4049/jimmunol.1202088.

CAS  Article  PubMed  Google Scholar 

Betsch A, Rutgeerts O, Fevery S, et al. Myeloid-derived suppressor cells in lymphoma: the good, the bad and the ugly. Blood Rev. 2018;32(6):490–8. https://doi.org/10.1016/j.blre.2018.04.006.

CAS  Article  PubMed  Google Scholar 

Lv M, Wang K, Huang XJ. Myeloid-derived suppressor cells in hematological malignancies: friends or foes. J Hematol Oncol. 2019;12(1):105. https://doi.org/10.1186/s13045-019-0797-3.

Article  PubMed  PubMed Central  Google Scholar 

Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction between MDSC and NK cells in solid and hematological malignancies: impact on HSCT. Front Immunol. 2021;12:638841. https://doi.org/10.3389/fimmu.2021.638841.

CAS  Article  PubMed  PubMed Central  Google Scholar 

D’Aveni M, Notarantonio AB, Bertrand A, Boulangé L, Pochon C, Rubio MT. Myeloid-derived suppressor cells in the context of allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:989. https://doi.org/10.3389/fimmu.2020.00989.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Condamine T, Dominguez GA, Youn JI, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 2016;1(2):8943. https://doi.org/10.1126/sciimmunol.aaf8943.

Article  Google Scholar 

Youn JI, Kumar V, Collazo M, et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol. 2013;14(3):211–20. https://doi.org/10.1038/ni.2526.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3):a006049. https://doi.org/10.1101/cshperspect.a006049.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kruger P, Saffarzadeh M, Weber AN, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11(3):e1004651. https://doi.org/10.1371/journal.ppat.1004651.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74. https://doi.org/10.1038/nri3070.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol. 2022;22(3):173–87. https://doi.org/10.1038/s41577-021-00571-6.

CAS  Article  PubMed  Google Scholar 

Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010;40(1):22–35. https://doi.org/10.1002/eji.200939903.

CAS  Article  PubMed  Google Scholar 

Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37(3):208–20. https://doi.org/10.1016/j.it.2016.01.004.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cubillos-Ruiz JR, Mohamed E, Rodriguez PC. Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. J Immunother Cancer. 2017;5:5. https://doi.org/10.1186/s40425-016-0203-4.

Article  PubMed  PubMed Central  Google Scholar 

Taki M, Abiko K, Baba T, et al. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat Commun. 2018;9(1):1685. https://doi.org/10.1038/s41467-018-03966-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Acharyya S, Oskarsson T, Vanharanta S, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165–78. https://doi.org/10.1016/j.cell.2012.04.042.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gu H, Deng W, Zheng Z, Wu K, Sun F. CCL2 produced by panc

留言 (0)

沒有登入
gif