Bone remodeling: an operational process ensuring survival and bone mechanical competence

Frost, H. M. Bone remodeling dynamics (Charles C Thomas Company, 1963).

Delaisse, J. M. et al. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 141, 115628 (2020).

CAS  PubMed  Article  Google Scholar 

Maggiano, C. M., Maggiano, I. S., Tiesler, V. G., Chi-Keb, J. R. & Stout, S. D. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus. J. Anat. 228, 190–202 (2016).

PubMed  Article  Google Scholar 

Parfitt, A. M. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55, 273–286 (1994).

CAS  PubMed  Article  Google Scholar 

Frost, H. M. A synchronous group of mammalian cells whose in vivo behavior can be studied. Henry Ford. Hosp. Med. Bull. 13, 161–172 (1965).

CAS  PubMed  Google Scholar 

Feynman, R., Leighton, R. & Sands, M. The Feynman lectures on physics (Addison-Wesley Pub. Co., 1964).

Parfitt, A. M. The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif. Tissue Int. 36, S37–S45 (1984).

PubMed  Article  Google Scholar 

Eriksen, E. F. Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr. Rev. 7, 379–408 (1986).

CAS  PubMed  Article  Google Scholar 

Parfitt, A. M. The quantum concept of bone remodeling and turnover: implications for the pathogenesis of osteoporosis. Calcif. Tissue Int. 28, 1–5 (1979).

CAS  PubMed  Article  Google Scholar 

Marais, A. et al. The future of quantum biology. J. R. Soc. Interface 15, 20180640 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Manolagas, S. C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115–137 (2000).

CAS  PubMed  Google Scholar 

Jilka, R. L. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med. Pediatr. Oncol. 41, 182–185 (2003).

PubMed  Article  Google Scholar 

Parfitt, A. M. Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30, 807–809 (2002).

CAS  PubMed  Article  Google Scholar 

Bonewald, L. F. & Marcus, D. F. R. In Osteoporosis 3rd edn (eds Nelson, D. & Rosen, C.) 170–189 (Elsevier, 2008).

Metz, L. N., Martin, R. B. & Turner, A. S. Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodeling. Bone 33, 753–759 (2003).

PubMed  Article  Google Scholar 

Buenzli, P. R. & Sims, N. A. Quantifying the osteocyte network in the human skeleton. Bone 75, 144–150 (2015).

CAS  PubMed  Article  Google Scholar 

Marotti, G. & Palumbo, C. The mechanism of transduction of mechanical strains into biological signals at the bone cellular level. Eur. J. Histochem. 51, 15–19 (2007).

PubMed  Google Scholar 

Tiede-Lewis, L. M. et al. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging 9, 2190–2208 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lecanda, F. et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J. Cell Biol. 151, 931–944 (2000).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chung, D. J. et al. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J. Cell Sci. 119, 4187–4198 (2006).

CAS  PubMed  Article  Google Scholar 

Zhang, Y. et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 6, e23516 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Green, J. Role of bone in regulation of systemic acid-base balance. Miner. Electrolyte Metab. 20, 7–30 (1994).

CAS  PubMed  Google Scholar 

Bushinsky, D. A., Chabala, J. M. & Levi-Setti, R. Ion microprobe analysis of mouse calvariae in vitro: evidence for a “bone membrane”. Am. J. Physiol. Endocrinol. Metab. 256, E152–E158 (1989).

CAS  Article  Google Scholar 

Bushinsky, D. A., Gavrilov, K., Chabala, J. M., Featherstone, J. D. & Levi-Setti, R. Effect of metabolic acidosis on the potassium content of bone. J. Bone Miner. Res. 12, 1664–1671 (1997).

CAS  PubMed  Article  Google Scholar 

Rubinacci, A., Benelli, F. D., Borgo, E. & Villa, I. Bone as an ion exchange system: evidence for a pump-leak mechanism devoted to the maintenance of high bone K+. Am. J. Physiol. Endocrinol. Metab. 278, E15–E24 (2000).

CAS  PubMed  Article  Google Scholar 

Dedic, C. et al. Calcium fluxes at the bone/plasma interface: acute effects of parathyroid hormone (PTH) and targeted deletion of PTH/PTH-related peptide (PTHrP) receptor in the osteocytes. Bone 116, 135–143 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rubinacci, A. et al. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs. Am. J. Physiol. Endocrinol. Metab. 282, E851–E864 (2002).

CAS  PubMed  Article  Google Scholar 

Qin, L., Liu, W., Cao, H. & Xiao, G. Molecular mechanosensors in osteocytes. Bone Res. 8, 23 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

McNamara, L. M., Majeska, R. J., Weinbaum, S., Friedrich, V. & Schaffler, M. B. Attachment of osteocyte cell processes to the bone matrix. Anat. Rec. 292, 355–363 (2009).

CAS  Article  Google Scholar 

Cabahug-Zuckerman, P. et al. Potential role for a specialized β(3) integrin-based structure on osteocyte processes in bone mechanosensation. J. Orthop. Res. 36, 642–652 (2018).

CAS  PubMed  Google Scholar 

Malone, A. M. D. et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc. Natl. Acad. Sci. USA. 104, 13325–13330 (2007).

Plotkin, L. I., Speacht, T. L. & Donahue, H. J. Cx43 and mechanotransduction in bone. Curr. Osteoporos. Rep. 13, 67–72 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Wang, L. et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11, 282 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lyons, J. S. et al. Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Sci. Signal. 10, eaan5748 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Morrell, A. E. et al. Mechanically induced Ca(2+) oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res. 6, 6 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

CAS  PubMed  Article  Google Scholar 

Kamel-ElSayed, S. A., Tiede-Lewis, L. M., Lu, Y., Veno, P. A. & Dallas, S. L. Novel approaches for two and three dimensional multiplexed imaging of osteocytes. Bone 76, 129–140 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Baron, R. & Kneissel, M. Wnt signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).

CAS  PubMed  Article  Google Scholar 

Karner, C. M. & Long, F. Wnt signaling and cellular metabolism in osteoblasts. Cell. Mol. Life Sci. 74, 1649–1657 (2017).

CAS  PubMed  Article  Google Scholar 

Day, T. F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

CAS  PubMed  Article  Google Scholar 

Hu, H. et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49–60 (2005).

CAS  PubMed  Article  Google Scholar 

Song, L. et al. Loss of Wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J. Bone Miner. Res. 27, 2344–2358 (2012).

CAS  PubMed  Article  Google Scholar 

Gaur, T. et al. Canonical Wnt signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132–33140 (2005).

CAS  PubMed  Article  Google

留言 (0)

沒有登入
gif