Increased production of chitinase by a Paenibacillus illinoisensis isolated from Brazilian coastal soil when immobilized in alginate beads

Berlowska J, Kregiel D, Ambroziak W (2013) Physiological tests for yeast brewery cells immobilized on modified chamotte carrier. Anton Leeuw Int J G 104:703–714. https://doi.org/10.1007/s10482-013-9978-1

CAS  Article  Google Scholar 

Cao L (2005) Introduction: Immobilized enzymes: past, present and prospects. 1st ed. In: Cao L (ed) Carrier-bound immobilized enzymes. Wiley-VCH, Weinheim, pp 1–52

Chapter  Google Scholar 

Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic Biochem Physiol 104(1):65–71. https://doi.org/10.1016/j.pestbp.2012.07.002

CAS  Article  Google Scholar 

Doan CT, Tran TN, Wang SL (2021) Production of thermophilic chitinase by Paenibacillus sp. TKU052 by bioprocessing of chitinous fishery wastes and its application in N-acetyl-D-glucosamine production. Polymers (Basel) 13(18):3048. https://doi.org/10.3390/polym13183048

Eş I, Ribeiro MC, Santos Júnior SR, Khaneghah AM, Rodriguez AG, Amaral AC (2016) Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix. Bioprocess Biosyst Eng 39:1487–1500. https://doi.org/10.1007/s00449-016-1625-6

CAS  Article  PubMed  Google Scholar 

Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082. https://doi.org/10.1007/s00253-015-6390-y

CAS  Article  PubMed  Google Scholar 

Gabardo S, Pereira GF, Rech R, Ayub MAS (2015) The modelling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors. J Ind Microbiol Biotechnol 42:1243–1253. https://doi.org/10.1007/s10295-015-1661-2

CAS  Article  PubMed  Google Scholar 

Gao H, Khera E, Lee JK, Wen F (2016) Immobilization of multi-biocatalysts in alginate beads for cofactor regeneration and improved reusability. J vis Exp 110:53994. https://doi.org/10.3791/53944

CAS  Article  Google Scholar 

Gohel V, Singh A, Vimal M, Ashwini P, Chatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. AJB 5(2):54–72

Google Scholar 

Halder SK, Maity C, Jana A, Ghosh K, das A PT, Mohapatra PKD, Pati BR, Mondal KC (2014) Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorisation and application of enzyme cocktail for fungal protoplast preparation. J Biosci Bioeng 117(2):170–177. https://doi.org/10.1016/j.jbiosc.2013.07.011

CAS  Article  PubMed  Google Scholar 

Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–40. https://doi.org/10.4103/0975-7406.106559

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jahromi ST, Barzkar N (2018) Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol 120(B):2147–2154. https://doi.org/10.1016/j.ijbiomac.2018.09.083

Jung WJ, Jung SJ, An KN, Jin YL, Park RD, Kim KY, Shon BK, Kim TH (2002) Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J Microbiol Biotechnol 12(6):865–871

CAS  Google Scholar 

Jung WJ, Mabood F, Souleimanov A, Park RD, Smith DL (2008) Chitinases produced by Paenibacillus illinoisensis and Bacillus thuringiensis subsp. pakistani degrade Nod factor from Bradyrhizobium japonicum. Microbiol Res 163:345–349. https://doi.org/10.1016/j.micres.2006.06.013

CAS  Article  PubMed  Google Scholar 

Kumar MNVR (2000) A review of chitin and chitosan applications. React Function Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

CAS  Article  Google Scholar 

Kurbanoglu EB, Zibeyaz K, Ozdal M, Taskin M, Kurbanoglu NI (2010) Asymmetric reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells. Bioresour Technol 101(11):3825–3829. https://doi.org/10.1016/j.biortech.2010.01.016

CAS  Article  PubMed  Google Scholar 

Maity C, Samanta S, Halder SK, Mohapatra PKD, Pati BR, Jana M, Mondal KC (2011) Isozymes of α-amylases from newly isolated Bacillus thuringiensis CKB19: production from immobilized cells. Biotechnol Bioprocess Eng 16:312–319. https://doi.org/10.1007/s12257-010-0218-5

CAS  Article  Google Scholar 

Manaf SA, Fuzi SFZM, Manas NHA, Illias RM, Oon LK, Hegde G, Man RC, Azelee NIW, Matias-Peralta HM (2021) Emergence of nanomaterial as potential immobilization support for whole cell biocatalyst and cell toxicity effects. Biotechnol Appl Biochem 68(6):1128–1138. https://doi.org/10.1002/bab.2034

CAS  Article  PubMed  Google Scholar 

Matsuo Y, Kurita M, Park JK, Tanaka K, Nakagawa T, Kawamukai M, Matsuda H (1999) Purification, characterization, and gene analysis of N-acetylglucosaminidase from Enterobacter sp. G-1. Biosci Biotechnol Biochem 63(7):1261–1268. https://doi.org/10.1271/bbb.63.1261

Miller GL (1959) Use of dinitrosaIicyIic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

CAS  Article  Google Scholar 

Nakatsu CH, Byappanahalli MN, Nevers MB (2019) Bacterial community 16S rRNA gene sequencing characterizes riverine microbial impact on lake Michigan. Front Microbiol 10:996. https://doi.org/10.3389/fmicb.2019.00996

Article  PubMed  PubMed Central  Google Scholar 

Nurdebyandaru N, Mubarik NR, Prawasti TS (2010) Chitinolytic bacteria isolated from chili rhizosphere: chitinase characterization and application as biocontrol for Aphis gossypii. Microbial Indones 4(3):103–107. https://doi.org/10.5454/mi.4.3.1

Article  Google Scholar 

Obradović NS, Kruni TC, Trifkovi TK, Bulatovi ML, Rakin MP, Rakin MB, Bugarski BM (2015) Influence of chitosan coating on mechanical stability of biopolymer carriers with probiotic starter culture in fermented whey beverages. Int J Polym Sci 2015:1–8. https://doi.org/10.1155/2015/732858

CAS  Article  Google Scholar 

Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S (2003) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53(3):337–342. https://doi.org/10.1016/S0144-8617(03)00076-6

CAS  Article  Google Scholar 

Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001

CAS  Article  Google Scholar 

Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA, Villalón P, Valdezate S (2017) Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect 19:19–27. https://doi.org/10.1016/j.nmni.2017.05.006

Article  PubMed  PubMed Central  Google Scholar 

Seo DJ, Jang YH, Park RD, Jung WJ (2012) Immobilization of chitinases from Streptomyces griseus and Paenibacillus illinoisensis on chitosan beads. Carbohydr Polym 88:391–394. https://doi.org/10.1016/j.carbpol.2011.12.009

Suresh PV (2012) Biodegradation of shrimp processing bio-waste and concomitant production of chitinase enzyme and N-acetyl-D-glucosamine by marine bacteria: production and process optimization. World J Microbiol Biotechnol 28:2945–2962. https://doi.org/10.1007/s11274-012-1106-2

CAS  Article  PubMed  Google Scholar 

Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V (2019) Seafood waste: a source for preparation of commercially employable chitin/ chitosan materials. Bioresour Bioprocess 6:8. https://doi.org/10.1186/s40643-019-0243-y

Article  Google Scholar 

Yang J, Zhang KQ (2019) Chitin synthesis and degradation in fungi: biology and enzymes. pp 153–167 In: Q. Yang and T. Fukamizo (eds.) Targeting Chitin-containing Organisms, Springer Nature, Singapore

Zur J, Wojcieszyńska D, Guzik U (2016) Metabolic responses of bacterial cells to immobilization. Molecules 21:1–15. https://doi.org/10.3390/molecules21070958

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif