Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects

Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7): a028035.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Checkoway H, Lundin JI, Kelada SN. Neurodegenerative diseases. IARC Sci Publ. 2011;163:407–19.

Google Scholar 

Kovacs GG. Concepts and classification of neurodegenerative diseases. In: Handbook of clinical neurology. New York: Elsevier; 2018. p. 301–7.

Zalpoor H, Akbari A, Samei A, Forghaniesfidvajani R, Kamali M, Afzalnia A, Manshouri S, Heidari F, Pornour M, Khoshmirsafa M, et al. The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell Mol Biol Lett. 2022;27(1):10.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discovery. 2004;3(3):205–14.

CAS  PubMed  Article  Google Scholar 

Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–69.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995;38(3):357–66.

CAS  PubMed  Article  Google Scholar 

Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals. 2018;11(2):44.

PubMed Central  Article  CAS  Google Scholar 

Sakthiswary R, Raymond AA. Stem cell therapy in neurodegenerative diseases: from principles to practice. Neural Regen Res. 2012;7(23):1822.

PubMed  PubMed Central  Google Scholar 

Lunn JS, Sakowski SA, Hur J, Feldman EL. Stem cell technology for neurodegenerative diseases. Ann Neurol. 2011;70(3):353–61.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Torrente Y, Polli E. Mesenchymal stem cell transplantation for neurodegenerative diseases. Cell Transplant. 2008;17(10–11):1103–13.

PubMed  Article  Google Scholar 

Chen X, Wang S, Cao W. Mesenchymal stem cell-mediated immunomodulation in cell therapy of neurodegenerative diseases. Cell Immunol. 2018;326:8–14.

CAS  PubMed  Article  Google Scholar 

Witkowska-Zimny M, Wrobel E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett. 2011;16(3):493–514.

PubMed  PubMed Central  Article  Google Scholar 

Rodríguez-Pardo VM, Vernot JP. Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion. Cell Mol Biol Lett. 2013;18(1):11–33.

PubMed  Article  CAS  Google Scholar 

Ahani-Nahayati M, Shariati A, Mahmoodi M, Olegovna Zekiy A, Javidi K, Shamlou S, Mousakhani A, Zamani M, Hassanzadeh A. Stem cell in neurodegenerative disorders; an emerging strategy. Int J Develop Neurosci. 2021;78:5.

Google Scholar 

Lin R, Li M, Luo M, Teng T, Pan Y, Huang H. Correction to: Mesenchymal stem cells decrease blood–brain barrier permeability in rats with severe acute pancreatitis. Cell Mol Biol Lett. 2019;24(1):56.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kim SH, Oh K-W, Jin HK, Bae J-S. Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases. BMB Rep. 2018;51(11):545.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lo Furno D, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol. 2018;233(5):3982–99.

CAS  PubMed  Article  Google Scholar 

Li Q, Yu P, Wang W, Zhang P, Yang H, Li S, Zhang L. Gene expression profiles of various cytokines in mesenchymal stem cells derived from umbilical cord tissue and bone marrow following infection with human cytomegalovirus. Cell Mol Biol Lett. 2014;19(1):140–57.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gorabi AM, Kiaie N, Barreto GE, Read MI, Tafti HA, Sahebkar A. The therapeutic potential of mesenchymal stem cell–derived exosomes in treatment of neurodegenerative diseases. Mol Neurobiol. 2019;56(12):8157–67.

CAS  PubMed  Article  Google Scholar 

Tatullo M, Codispoti B, Spagnuolo G, Zavan B. Human periapical cyst-derived stem cells can be a smart “lab-on-a-cell” to investigate neurodegenerative diseases and the related alteration of the exosomes’ content. Brain Sci. 2019;9(12):358.

CAS  PubMed Central  Article  Google Scholar 

Chen C, Huang H, Hu W, Li X. Mesenchymal stem cell-derived exosomes for the treatment of neurodegenerative diseases: existing problems and prospects in application. Chin J Tissue Eng Res. 2019;23(9):1441.

Google Scholar 

Wang X, Zhou Y, Gao Q, Ping D, Wang Y, Wu W, Lin X, Fang Y, Zhang J, Shao A. The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases. Oxid Med Cell Longevity. 2020;2020:1.

Google Scholar 

Wei H, Xu Y, Chen Q, Chen H, Zhu X, Li Y. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis. Cell Death Dis. 2020;11(4):290.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Miyanaga T, Ueda Y, Miyanaga A, Yagishita M, Hama N. Angiogenesis after administration of basic fibroblast growth factor induces proliferation and differentiation of mesenchymal stem cells in elastic perichondrium in an in vivo model: mini review of three sequential republication-abridged reports. Cell Mol Biol Lett. 2018;23(1):49.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2(10):734–44.

CAS  PubMed  Article  Google Scholar 

Fan L, Mao C, Xu Y, Shi C, Hu X, Zhang S, Yang Z, Hu Z, Sun H, Fan Y. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol. 2019;10:1312.

PubMed  Article  Google Scholar 

Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–901.

CAS  PubMed  Article  Google Scholar 

Viola KL, Klein WL. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015;129(2):183–206.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bisht K, Sharma K, Tremblay M. Chronic stress as a risk factor for Alzheimer’s disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress. 2018;9:9–21.

PubMed  PubMed Central  Article  Google Scholar 

Poston KL, Ua Cruadhlaoich MA, Santoso LF, Bernstein JD, Liu T, Wang Y, Rutt B, Kerchner GA, Zeineh MM. Substantia nigra volume dissociates bradykinesia and rigidity from tremor in Parkinson’s disease: a 7 Tesla imaging study. J Parkinsons Dis. 2020;10(2):591–604.

PubMed  PubMed Central  Article  Google Scholar 

Klockgether T. Parkinson’s disease: clinical aspects. Cell Tissue Res. 2004;318(1):115–20.

PubMed  Article  Google Scholar 

Shulman JM, Jager PLD, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6(1):193–222.

CAS  PubMed  Article  Google Scholar 

Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE, Ahmed Z, Brett FM, Hardy J, Quinn N, et al. Parkin disease: a clinicopathologic entity? JAMA Neurol. 2013;70(5):571–9.

PubMed  PubMed Central  Article  Google Scholar 

Baudic S, Maison P, Dolbeau G, Boissé M-F, Bartolomeo P, Dalla Barba G, Traykov L, Bachoud-Lévi A-C. Cognitive impairment related to apathy in early Huntington’s disease. Dement Geriatr Cogn Disord. 2006;21(5–6):316–21.

PubMed  Article  Google Scholar 

Arrasate M, Finkbeiner S. Protein aggregates in Huntington’s disease. Exp Neurol. 2012;238(1):1–11.

CAS  PubMed  Article  Google Scholar 

Huang WJ, Chen WW, Zhang X. Huntington’s disease: molecular basis of pathology and status of current therapeutic approaches. Exp Ther Med. 2016;12(4):1951–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu-Yesucevitz L, Bilgutay A, Zhang Y-J, Vanderwyde T, Citro A, Mehta T, Zaarur N, McKee A, Bowser R, Sherman M. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS ONE. 2010;5(10): e13250.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Fang MY, Markmiller S, Vu AQ, Javaherian A, Dowdle WE, Jolivet P, Bushway PJ, Castello NA, Baral A, Chan MY, et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron. 2019;103(5):802-19.e11.

CAS  PubMed  PubMed Central  Article  Google Scholar

留言 (0)

沒有登入
gif