Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5

Erlandson, M. C. et al. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J. Bone Min. Res. 27, 104–110 (2012).

Article  Google Scholar 

Warden, S. J., Fuchs, R. K., Castillo, A. B., Nelson, I. R. & Turner, C. H. Exercise when young provides lifelong benefits to bone structure and strength. J. Bone Min. Res. 22, 251–259 (2007).

Article  Google Scholar 

Lang, T. et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Min. Res. 19, 1006–1012 (2004).

Article  Google Scholar 

Gabel, L., Macdonald, H. M., Nettlefold, L. & McKay, H. A. Physical activity, sedentary time, and bone strength from childhood to early adulthood: a mixed longitudinal HR-pQCT study. J. Bone Min. Res. 32, 1525–1536 (2017).

CAS  Article  Google Scholar 

Fritton, S. P. & Weinbaum, S. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41, 347–374 (2009).

PubMed  PubMed Central  Article  Google Scholar 

Bonewald, L. F. The amazing osteocyte. J. Bone Min. Res. 26, 229–238 (2011).

CAS  Article  Google Scholar 

Burra, S. et al. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc. Natl. Acad. Sci. USA. 107, 13648–13653 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bonewald, L. F. & Johnson, M. L. Osteocytes, Mechanosensing and Wnt Signaling. Bone 42, 606–615 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

CAS  PubMed  Article  Google Scholar 

Hughes, D. E., Salter, D. M., Dedhar, S. & Simpson, R. Integrin expression in human bone. J. Bone Min. Res. 8, 527–533 (1993).

CAS  Article  Google Scholar 

Salter, D. M., Robb, J. E. & Wright, M. O. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J. Bone Min. Res. 12, 1133–1141 (1997).

CAS  Article  Google Scholar 

Guo, Y., Martinez-Williams, C. & Rannels, D. E. Integrin-mediated regulation of connexin 43 expression by alveolar epithelial cells. Chest 121, 30S–31S (2002).

PubMed  Article  Google Scholar 

Batra, N., Riquelme, M. A., Burra, S. & Jiang, J. X. 14-3-3theta facilitates plasma membrane delivery and function of mechanosensitive connexin 43 hemichannels. J. Cell Sci. 127, 137–146 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Cherian, P. P. et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol. Biol. Cell. 16, 3100–3106 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Batra, N. et al. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc. Natl. Acad. Sci. USA. 109, 3359–3364 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Batra, N. et al. Direct regulation of osteocytic connexin 43 hemichannels through AKT kinase activated by mechanical stimulation. J. Biol. Chem. 289, 10582–10591 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Riquelme, M. A., Gu, S., Hua, R. & Jiang, J. X. Mechanotransduction via the coordinated actions of integrins, PI3K signaling and Connexin hemichannels. Bone Res. 9, 8 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Siller-Jackson, A. J. et al. Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J. Biol. Chem. 283, 26374–26382 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xia, X. et al. Prostaglandin promotion of osteocyte gap junction function through transcrip- tional regulation of connexin 43 by glycogen synthase kinase 3/βcatenin signaling. Mol. Cell Biol. 30, 206–219 (2010).

CAS  PubMed  Article  Google Scholar 

Zhao, D. et al. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading. eLife. 11, e74365 (2022).

Yang, J. T., Rayburn, H. & Hynes, R. O. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119, 1093–1105 (1993).

CAS  PubMed  Article  Google Scholar 

Xu, H. et al. Connexin 43 channels are essential for normal bone structure and osteocyte viability. J. Bone Min. Res. 30, 436–448 (2015).

Article  CAS  Google Scholar 

Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA. 89, 6232–6236 (1992).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morse, A. et al. Sclerostin antibody augments the anabolic bone formation response in a mouse model of mechanical tibial loading. J. Bone Min. Res. 33, 486–498 (2018).

CAS  Article  Google Scholar 

Sugiyama, T. et al. Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J. Bone Min. Res. 27, 1784–1793 (2012).

Article  Google Scholar 

Sugiyama, T., Price, J. S. & Lanyon, L. E. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46, 314–321 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Windahl, S. H. et al. Estrogen receptor-alpha is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. J. Bone Min. Res. 28, 291–301 (2013).

CAS  Article  Google Scholar 

Thorsen, K., Kristoffersson, A. O., Lerner, U. H. & Lorentzon, R. P. In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading. J. Clin. Invest. 98, 2446–2449 (1996).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jee, W. S., Ueno, K., Deng, Y. P. & Woodbury, D. M. The effects of prostaglandin E2 in growing rats: increased metaphyseal hard tissue and cortico-endosteal bone formation. Calcif. Tissue Int. 37, 148–157 (1985).

CAS  PubMed  Article  Google Scholar 

Tu, X. et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50, 209–217 (2012).

CAS  PubMed  Article  Google Scholar 

Bivi, N. et al. Cell autonomous requirement of connexin 43 for osteocyte survival consequences for endocortical resorption and periosteal bone formation. J. Bone Min. Res. 27, 374–389 (2012).

CAS  Article  Google Scholar 

Plotkin, L. I., Manolagas, S. C. & Bellido, T. Transduction of cell survival signals by connexin-43 hemichannels. J. Cell Biochem. 277, 8648–8657 (2001).

Google Scholar 

Cabahug-Zuckerman, P. et al. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J. Bone Min. Res. 31, 1356–1365 (2016).

CAS  Article  Google Scholar 

Kogianni, G., Mann, V. & Noble, B. S. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J. Bone Min. Res. 23, 915–927 (2008).

Article  Google Scholar 

Ross, T. D. et al. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25, 613–618 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Patel, T. K., Brodt, M. D. & Silva, M. J. Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice. J. Biomech. 47, 451–457 (2014).

PubMed  Article  Google Scholar 

Birkhold, A. I., Razi, H., Duda, G. N., Checa, S. & Willie, B. M. Tomography-based quantification of regional differences in cortical bone surface remodeling and mechano-response. Calcif. Tissue Int. 100, 255–270 (2017).

CAS  PubMed  Article  Google Scholar 

Bass, S. L. et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J. Bone Min. Res. 17, 2274–2280 (2002).

CAS  Article  Google Scholar 

Grimston, S. K. et al. Role of connexin43 in osteoblast response to physical load. Ann. N. Y. Acad. Sci. 1068, 214–224 (2006).

CAS  PubMed  Article  Google Scholar 

Grimston, S. K., Brodt, M. D., Silva, M. J. & Civitelli, R. Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J. Bone Min. Res. 23, 879–886 (2008).

Article  Google Scholar 

Grimston, S. K., Watkins, M. P., Brodt, M. D., Silva, M. J. & Civitelli, R. Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin43 deficient mice. PLoS One 7, e44222 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, Y. et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 6, e23516 (2011).

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif