Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace

Alejandro OA, Rodney E, Daniel V, Carter I, Michael S, Rob W, Mirko K (2006) Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots. Interface Focus 7:20160087. https://doi.org/10.1098/rsfs.2016.0087

Article  Google Scholar 

Bergou AJ, Ristroph L, Guckenheimer J, Cohen I, Wang ZJ (2010) Fruit flies modulate passive wing pitching to generate in-flight turns. Phys Rev Lett 104:148101.1-148101.4. https://doi.org/10.1103/PhysRevLett.104.148101

CAS  Article  Google Scholar 

Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733. https://doi.org/10.1038/35089071

CAS  Article  PubMed  Google Scholar 

Chen PY, Lin A, Lin YS, Meyers MA, Mckittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed 1(3):208–226. https://doi.org/10.7078/TSMHMNJN.201009.0135

Article  Google Scholar 

Clercq KD, Kat RD, Remes B (2009). Flow visualization and force measurements on a hovering flapping-wing MAV ’DelFly II’. In: AIAA fluid dynamics conference, San Antonio. https://doi.org/10.2514/6.2009-4035

Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960. https://doi.org/10.1126/science.284.5422.1954

CAS  Article  PubMed  Google Scholar 

Dickson WB, Straw AD, Dickinson MH (2012) Integrative model of Drosophila flight. AIAA J 46:2150–2164. https://doi.org/10.2514/1.29862

Article  Google Scholar 

Dudley R (2000) The biomechanics of insect flight: form, function, evolution. Ann Entomol Soc Am 93(5):307–308

Article  Google Scholar 

Gorb SN, Kesel A, Berger J (2000) Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering. Arthropod Struct Dev 29:129–135. https://doi.org/10.1016/S1467-8039(00)00020-7

CAS  Article  PubMed  Google Scholar 

Ha NS, Truong QT, Goo NS, Park HC (2013) Biomechanical properties of insect wings: the stress stiffening effects on the asymmetric bending of the Allomyrina dichotoma beetle’s hind wing. PLoS ONE 8:e80689. https://doi.org/10.1371/journal.pone.0080689

CAS  Article  PubMed  PubMed Central  Google Scholar 

Haas F, Gorb S, Wootton RJ (2000) Elastic joints in dermapteran hind wings: materials and wing folding. Arthropod Struct Dev 29:137–146. https://doi.org/10.1016/S1467-8039(00)00025-6

CAS  Article  PubMed  Google Scholar 

Hepburn HR, Radloff SE (2004) The wing coupling apparatus and the morphometric analysis of honeybee populations. S Afr J Sci 100:565–570. https://doi.org/10.1109/OCEANS.1988.794859

Article  Google Scholar 

Huang H, Sun M (2012) Forward flight of a model butterfly: simulation by equations of motion coupled with the Navier-Stokes equations. Acta Mech Sin 28:1–12. https://doi.org/10.1007/s10409-012-0209-1

CAS  Article  Google Scholar 

Kesel AB, Philippi U, Nachtigall W (1998) Biomechanical aspects of the insect wing: an analysis using the finite element method. Comput Biol Med 28(4):423–437. https://doi.org/10.1016/S0010-4825(98)00018-3

CAS  Article  PubMed  Google Scholar 

Kukalova-Peck J (1987) Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J Morphol 156:53–125. https://doi.org/10.1002/jmor.1051560104

Article  Google Scholar 

Li X, Guo C (2019a) Microstructure and material properties of hind wings of a bamboo weevil Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Microsc Res Tech 82:1102–1113. https://doi.org/10.1002/jemt.23258

CAS  Article  PubMed  Google Scholar 

Li X, Guo C (2019b) Structural characteristics analysis of the hind wings in a bamboo weevil (Cyrtotrachelus buqueti). IET Nanobiotechnol 13:850–856. https://doi.org/10.1049/iet-nbt.2018.5409

Article  PubMed  PubMed Central  Google Scholar 

Li LH, Guo C, Li X, Xu S, Han C (2017a) Microstructure and mechanical properties of rostrum in Cyrtotrachelus longimanus (Coleoptera: Curculionidae). Anim Cells Syst 21:199–206. https://doi.org/10.1080/19768354.2017.1330764

CAS  Article  Google Scholar 

Li LH, Guo C, Li X, Han C (2017b) Morphology and nanoindentation properties of mouthparts in Cyrtotrachelus longimanus (Coleoptera:Curculionidae). Microsc Res Tech 80:704–711. https://doi.org/10.1002/jemt.22855

Article  PubMed  Google Scholar 

Lietz C, Schaber CF, Gorb SN, Rajabi H (2021) The damping and structural properties of dragonfly and damselfly wings during dynamic movement. Commun Biol 4:717. https://doi.org/10.1038/s42003-021-02263-2

Article  Google Scholar 

Liu K, Jiang L (2011) Bio-inspired design of multiscale structures for function integration. Nano Today 6:155–175. https://doi.org/10.1016/j.nantod.2011.02.002

CAS  Article  Google Scholar 

Machida K, Shimanuki J (2005) Structure analysis of the wing of a dragonfly. Proc SPIE 5852, Third International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics, Singapore. pp. 671–676. https://doi.org/10.1117/12.621765

Michèle C, Bruno G, Alain V (2004) Patterns in evolution: veins of the Drosophila wing. Trends Genet 20:498–505. https://doi.org/10.1016/j.tig.2004.07.013

CAS  Article  Google Scholar 

Noorhidayah M, Yazawa K, Kan N, Normarashid Y (2018) Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.). PLoS ONE 13:e0193147. https://doi.org/10.1371/journal.pone.0193147

CAS  Article  Google Scholar 

Ren LQ, Qiu ZM, Han ZW, Guan HY, Wu LY (2007) Experimental investigation on color variation mechanisms of structural light in Papilio maackii ménétriès butterfly wings. Science in China 50:430–436. https://doi.org/10.1007/s11431-007-0052-y

Article  Google Scholar 

Sachs C, Fabritius H, Raabe D (2006) Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. J Struct Biol 155:409–425. https://doi.org/10.1016/j.jsb.2006.06.004

CAS  Article  PubMed  Google Scholar 

Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204:2607–2626. https://doi.org/10.1242/jeb.204.15.2607

CAS  Article  PubMed  Google Scholar 

Shen H, Ji AH, Li Q, Wang W, Qing GD, Han QF (2021) The unique strategies of flight initiation adopted by butterflies on vertical surfaces. J Bionic Eng 18:840–856. https://doi.org/10.1007/s42235-021-0061-8

Article  Google Scholar 

Smith CW, Herbert R, Wootton RJ, Evans KE (2000) The hind wing of the desert locust (Schistocerca gregaria Forskål): II. Mechanical properties and functioning of the membrane. J Exp Biol 203:2933–2943. https://doi.org/10.1023/A:1008144208706

CAS  Article  PubMed  Google Scholar 

Song F, Lee KL, Soh AK, Zhu F, Bai YL (2004) Experimental studies of the material properties of the forewing of cicada (Homóptera Cicàdidae). J Exp Biol 207(17):3035–3042. https://doi.org/10.1242/jeb.01122

CAS  Article  PubMed  Google Scholar 

Sudo S (1996) Wing structure of dragonfly (second report). Trans JSME 62–599B:134–138. https://doi.org/10.1299/kikaic.64.3526

Article  Google Scholar 

Sun M (2005) Dynamic flight stability of a hovering bumblebee. J Exp Biol 208:447–459. https://doi.org/10.1242/jeb.01407

Article  PubMed  Google Scholar 

Tsai CC, Childers RA, Shi NN (2020) Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat Commun 11:551. https://doi.org/10.1038/s41467-020-14408-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tuo W, Chen J, Wu Z, Xie J, Wang Y (2016) Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles characteristics of the tensile mechanical properties of fresh and dry forewings of beetles. Mat Sci Eng C-Mater 65:51–58. https://doi.org/10.1016/j.msec.2016.04.025

CAS  Article  Google Scholar 

Walker SM, Thomas ALR, Taylor GK (2009) Deformable wing kinematics in free-flying hoverflies. J R Soc Interface 7:131–142. https://doi.org/10.1098/rsif.2009.0120

Article  PubMed  PubMed Central  Google Scholar 

Wang ZJ (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207:449–460. https://doi.org/10.1242/jeb.00739

Article  PubMed  Google Scholar 

Weisman NY (2005) Regulation of development of wing venation in Drosophila melanogaster by a network of signalling pathways. Russ J Dev Biol 36:352–362. https://doi.org/10.1007/s11174-005-0051-5

CAS  Article  Google Scholar 

Wood RJ (2007) Liftoff of a 60mg flapping-wing MAV. Intelligent robots and systems. Iros 2007. ieee/rsjinternational conferenceon. IEEE 2007:1889–1894. https://doi.org/10.1109/IROS.2007.4399502

Article  Google Scholar 

Yokoyama N, Senda K, Iima M, Hirai N (2013) Aerodynamic forces and vortical structures in flapping butterfly’s forward flight. Phys Fluids 25:021902. https://doi.org/10.1063/1.4790882

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif