A Novel Synonymous Variant of PHEX in a Patient with X-Linked Hypophosphatemia

Francis F, Hennig S, Korn B, Reinhardt R, De Jong P, Poustka A, Lehrach H, Rowe PS, Goulding JN, Summerfield T, Mountford R (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11:130–136. https://doi.org/10.1038/ng1095-130

CAS  Article  Google Scholar 

Liao H, Zhu HM, Liu HQ, Li LP, Liu SL, Wang H (2018) Two novel variants of the PHEX gene in patients with X-linked dominant hypophosphatemic rickets and prenatal diagnosis for fetuses in these families. Int J Mol Med 41:2012–2020. https://doi.org/10.3892/ijmm.2018.3402

CAS  Article  PubMed  PubMed Central  Google Scholar 

Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388. https://doi.org/10.1002/jbmr.340

Article  PubMed  Google Scholar 

Endo I, Fukumoto S, Ozono K, Namba N, Inoue D, Okazaki R, Yamauchi M, Sugimoto T, Minagawa M, Michigami T, Nagai M, Matsumoto T (2015) Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr J 62:811–816. https://doi.org/10.1507/endocrj.EJ15-0275

CAS  Article  PubMed  Google Scholar 

Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 160:491–497. https://doi.org/10.1530/eje-08-0818

CAS  Article  PubMed  Google Scholar 

Rafaelsen S, Johansson S, Ræder H, Bjerknes R (2016) Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur J Endocrinol 174:125–136. https://doi.org/10.1530/eje-15-0515

CAS  Article  PubMed  Google Scholar 

Hawley S, Shaw NJ, Delmestri A, Prieto-Alhambra D, Cooper C, Pinedo-Villanueva R, Javaid MK (2020) Prevalence and mortality of individuals with X-linked hypophosphatemia: a United Kingdom real-world data analysis. J Clin Endocrinol Metab 105:e871-878. https://doi.org/10.1210/clinem/dgz203

Article  Google Scholar 

Francis F, Strom TM, Hennig S, Böddrich A, Lorenz B, Brandau O, Mohnike KL, Cagnoli M, Steffens C, Klages S, Borzym K, Pohl T, Oudet C, Econs MJ, Rowe PS, Reinhardt R, Meitinger T, Lehrach H (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 7:573–585. https://doi.org/10.1101/gr.7.6.573

CAS  Article  PubMed  Google Scholar 

Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981. https://doi.org/10.1006/bbrc.2001.5084

CAS  Article  PubMed  Google Scholar 

White KE, Evans WE, O’Riordan JLH, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Meitinger T, Strom TM (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348. https://doi.org/10.1038/81664

CAS  Article  Google Scholar 

Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568. https://doi.org/10.1172/jci19081

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huang X, Jiang Y, Xia W (2013) FGF23 and phosphate wasting disorders. Bone Res 1:120–132. https://doi.org/10.4248/br201302002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lecoq AL, Chaumet-Riffaud P, Blanchard A, Dupeux M, Rothenbuhler A, Lambert B, Durand E, Boros E, Briot K, Silve C, Francou B, Piketty M, Chanson P, Brailly-Tabard S, Linglart A, Kamenický P (2020) Hyperparathyroidism in patients with X-linked hypophosphatemia. J Bone Miner Res 35:1263–1273. https://doi.org/10.1002/jbmr.3992

CAS  Article  PubMed  Google Scholar 

Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A (2019) Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15:435–455. https://doi.org/10.1038/s41581-019-0152-5

Article  PubMed  PubMed Central  Google Scholar 

Zhang C, Zhao Z, Sun Y, Xu L, JiaJue R, Cui L, Pang Q, Jiang Y, Li M, Wang O, He X, He S, Nie M, Xing X, Meng X, Zhou X, Yan L, Kaplan JM, Insogna KL, Xia W (2019) Clinical and genetic analysis in a large Chinese cohort of patients with X-linked hypophosphatemia. Bone 121:212–220. https://doi.org/10.1016/j.bone.2019.01.021

CAS  Article  PubMed  Google Scholar 

Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298. https://doi.org/10.1038/nrg775

CAS  Article  PubMed  Google Scholar 

Christie PT, Harding B, Nesbit MA, Whyte MP, Thakker RV (2001) X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene. J Clin Endocrinol Metab 86:3840–3844. https://doi.org/10.1210/jcem.86.8.7730

CAS  Article  PubMed  Google Scholar 

BinEssa HA, Zou M, Al-Enezi AF, Alomrani B, Al-Faham MSA, Al-Rijjal RA, Meyer BF, Shi Y (2019) Functional analysis of 22 splice-site mutations in the PHEX, the causative gene in X-linked dominant hypophosphatemic rickets. Bone 125:186–193. https://doi.org/10.1016/j.bone.2019.05.017

CAS  Article  PubMed  Google Scholar 

Li H, Ji CY, Zong XN, Zhang YQ (2009) Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 47:487–492

PubMed  Google Scholar 

Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, Seaby EG, Spiers-Fitzgerald K, Lye J, Ellard S, Thomas NS, Bunyan DJ, Douglas AGL, Baralle D (2020) Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med 22:1005–1014. https://doi.org/10.1038/s41436-020-0766-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rowlands C, Thomas HB, Lord J, Wai HA, Arno G, Beaman G, Sergouniotis P, Gomes-Silva B, Campbell C, Gossan N, Hardcastle C, Webb K, O’Callaghan C, Hirst RA, Ramsden S, Jones E, Clayton-Smith J, Webster AR, Douglas AGL, O’Keefe RT, Newman WG, Baralle D, Black GCM, Ellingford JM (2021) Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders. Sci Rep 11:20607. https://doi.org/10.1038/s41598-021-99747-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, Kanterakis E, Gao H, Kia A, Batzoglou S, Sanders SJ, Farh KK (2019) Predicting splicing from primary sequence with deep learning. Cell 176:535-548.e524. https://doi.org/10.1016/j.cell.2018.12.015

CAS  Article  PubMed  Google Scholar 

Shen H, Li J, Zhang J, Xu C, Jiang Y, Wu Z, Zhao F, Liao L, Chen J, Lin Y, Tian Q, Papasian CJ, Deng HW (2013) Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians. PLoS ONE 8:e59494. https://doi.org/10.1371/journal.pone.0059494

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691. https://doi.org/10.1038/nrg3051

CAS  Article  PubMed  Google Scholar 

Zeng Z, Aptekmann AA, Bromberg Y (2021) Decoding the effects of synonymous variants. Nucleic Acids Res 49:12673–12691. https://doi.org/10.1093/nar/gkab1159

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zeng Z, Bromberg Y (2019) Predicting functional effects of synonymous variants: a systematic review and perspectives. Front Genet 10:914. https://doi.org/10.3389/fgene.2019.00914

CAS  Article  PubMed  PubMed Central  Google Scholar 

Naito T (2019) Predicting the impact of single nucleotide variants on splicing via sequence-based deep neural networks and genomic features. Hum Mutat 40:1261–1269. https://doi.org/10.1002/humu.23794

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pritchard CC, Smith C, Marushchak T, Koehler K, Holmes H, Raskind W, Walsh T, Bennett RL (2013) A mosaic PTEN mutation causing Cowden syndrome identified by deep sequencing. Genet Med 15:1004–1007. https://doi.org/10.1038/gim.2013.51

CAS  Article  PubMed  Google Scholar 

Qin L, Wang J, Tian X, Yu H, Truong C, Mitchell JJ, Wierenga KJ, Craigen WJ, Zhang VW, Wong LC (2016) Detection and quantification of mosaic mutations in disease genes by next-generation sequencing. J Mol Diagn 18:446–453. https://doi.org/10.1016/j.jmoldx.2016.01.002

CAS  Article  PubMed  Google Scholar 

Saito T, Nishii Y, Yasuda T, Ito N, Suzuki H, Igarashi T, Fukumoto S, Fujita T (2009) Familial hypophosphatemic rickets caused by a large deletion in PHEX gene. Eur J Endocrinol 161:647–651. https://doi.org/10.1530/eje-09-0261

CAS  Article  PubMed  Google Scholar 

Clausmeyer S, Hesse V, Clemens PC, Engelbach M, Kreuzer M, Becker-Rose P, Spital H, Schulze E, Raue F (2009) Mutational analysis of the PHEX gene: novel point mutations and detection of large deletions by MLPA in patients with X-linked hypophosphatemic rickets. Calcif Tissue Int 85:211–220. https://doi.org/10.1007/s00223-009-9260-8

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif