Aib1 deficiency exacerbates inflammatory responses in acute myocardial infarction mice

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Task Force for the Universal Definition of Myocardial I (2012) Third universal definition of myocardial infarction. Nat Rev Cardiol 9: 620-633.https://doi.org/10.1038/nrcardio.2012.122

Nascimento BR, Brant LCC, Marino BCA, Passaglia LG, Ribeiro ALP (2019) Implementing myocardial infarction systems of care in low/middle-income countries. Heart 105:20–26. https://doi.org/10.1136/heartjnl-2018-313398

Article  PubMed  Google Scholar 

Liu J, Wang H, Li J (2016) Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin Med Insights Cardiol 10:79–84. https://doi.org/10.4137/CMC.S33164

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553. https://doi.org/10.1161/01.RES.0000130526.20854.fa

CAS  Article  PubMed  Google Scholar 

Li Z, Hu S, Huang K, Su T, Cores J, Cheng K (2020) Targeted anti-IL-1beta platelet microparticles for cardiac detoxing and repair. Sci Adv 6: eaay0589. https://doi.org/10.1126/sciadv.aay0589

Buckley LF, Abbate A (2018) Interleukin-1 blockade in cardiovascular diseases: a clinical update. Eur Heart J 39:2063–2069. https://doi.org/10.1093/eurheartj/ehy128

CAS  Article  PubMed  Google Scholar 

Holte E, Kleveland O, Ueland T, Kunszt G, Bratlie M, Broch K, Michelsen AE, Bendz B, Amundsen BH, Aakhus S, Damas JK, Gullestad L, Aukrust P, Wiseth R (2017) Effect of interleukin-6 inhibition on coronary microvascular and endothelial function in myocardial infarction. Heart 103:1521–1527. https://doi.org/10.1136/heartjnl-2016-310875

CAS  Article  PubMed  Google Scholar 

Berry MF, Woo YJ, Pirolli TJ, Bish LT, Moise MA, Burdick JW, Morine KJ, Jayasankar V, Gardner TJ, Sweeney HL (2004) Administration of a tumor necrosis factor inhibitor at the time of myocardial infarction attenuates subsequent ventricular remodeling. J Heart Lung Transplant 23:1061–1068. https://doi.org/10.1016/j.healun.2004.06.021

Article  PubMed  Google Scholar 

Xu J, Wu RC, O’Malley BW (2009) Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9:615–630. https://doi.org/10.1038/nrc2695

CAS  Article  PubMed  PubMed Central  Google Scholar 

York B, O’Malley BW (2010) Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285:38743–38750. https://doi.org/10.1074/jbc.R110.193367

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW (2000) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 97:6379–6384. https://doi.org/10.1073/pnas.120166297

CAS  Article  PubMed  PubMed Central  Google Scholar 

Feingold K, Kim MS, Shigenaga J, Moser A, Grunfeld C (2004) Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab 286:E201-207. https://doi.org/10.1152/ajpendo.00205.2003

CAS  Article  PubMed  Google Scholar 

Chen X, Qin L, Liu Z, Liao L, Martin JF, Xu J (2015) Knockout of SRC-1 and SRC-3 in mice decreases cardiomyocyte proliferation and causes a noncompaction cardiomyopathy phenotype. Int J Biol Sci 11:1056–1072. https://doi.org/10.7150/ijbs.12408

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yu C, York B, Wang S, Feng Q, Xu J, O’Malley BW (2007) An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 25:765–778. https://doi.org/10.1016/j.molcel.2007.01.025

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mullany LK, Rohira AD, Leach JP, Kim JH, Monroe TO, Ortiz AR, Stork B, Gaber MW, Sarkar P, Sikora AG, Rosengart TK, York B, Song Y, Dacso CC, Lonard DM, Martin JF, O’Malley BW (2020) A steroid receptor coactivator stimulator (MCB-613) attenuates adverse remodeling after myocardial infarction. Proc Natl Acad Sci U S A 117:31353–31364. https://doi.org/10.1073/pnas.2011614117

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li Y, Zhou J, Zhang O, Wu X, Guan X, Xue Y, Li S, Zhuang X, Zhou B, Miao G, Zhang L (2020) Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol 80:106156. https://doi.org/10.1016/j.intimp.2019.106156

CAS  Article  PubMed  Google Scholar 

Hiramori K (1987) Major causes of death from acute myocardial infarction in a coronary care unit. Jpn Circ J 51:1041–1047. https://doi.org/10.1253/jcj.51.1041

CAS  Article  PubMed  Google Scholar 

Deten A, Volz HC, Briest W, Zimmer HG (2002) Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental Stud in rats Cardiovasc Res 55:329–340. https://doi.org/10.1016/s0008-6363(02)00413-3

CAS  Article  Google Scholar 

Gao C, Liu Y, Yu Q, Yang Q, Li B, Sun L, Yan W, Cai X, Gao E, Xiong L, Wang H, Tao L (2015) TNF-alpha antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin. Am J Physiol Heart Circ Physiol 308:H1583-1591. https://doi.org/10.1152/ajpheart.00346.2014

CAS  Article  PubMed  Google Scholar 

Kobara M, Noda K, Kitamura M, Okamoto A, Shiraishi T, Toba H, Matsubara H, Nakata T (2010) Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc Res 87:424–430. https://doi.org/10.1093/cvr/cvq078

CAS  Article  PubMed  Google Scholar 

Cheng J, Zou Q, Xue Y (2021) Nerol protects against hypoxia/reoxygenation-induced apoptotic injury by activating PI3K/AKT signaling in cardiomyocytes. STEMedicine 2:e87. https://doi.org/10.37175/stemedicine.v2i6.87

Article  Google Scholar 

Chen W, Zhuo M, Lu X, Xia X, Zhao Y, Huang Z, Xu J, Li W, Yu C (2018) SRC-3 protects intestine from DSS-induced colitis by inhibiting inflammation and promoting goblet cell differentiation through enhancement of KLF4 expression. Int J Biol Sci 14:2051–2064. https://doi.org/10.7150/ijbs.28576

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu T, Zhang L, Joo D, Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2. https://doi.org/10.1038/sigtrans.2017.23

Kawano S, Kubota T, Monden Y, Tsutsumi T, Inoue T, Kawamura N, Tsutsui H, Sunagawa K (2006) Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol 291:H1337-1344. https://doi.org/10.1152/ajpheart.01175.2005

CAS  Article  PubMed  Google Scholar 

Coste A, Antal MC, Chan S, Kastner P, Mark M, O’Malley BW, Auwerx J (2006) Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO J 25:2453–2464. https://doi.org/10.1038/sj.emboj.7601106

CAS  Article  PubMed  PubMed Central  Google Scholar 

O’Rourke SA, Dunne A, Monaghan MG (2019) The role of macrophages in the infarcted myocardium: orchestrators of ECM remodeling. Front Cardiovasc Med 6:101. https://doi.org/10.3389/fcvm.2019.00101

CAS  Article  PubMed  PubMed Central  Google Scholar 

Puhl SL, Steffens S (2019) Neutrophils in post-myocardial infarction inflammation: damage vs. resolution? Front Cardiovasc Med 6: 25. https://doi.org/10.3389/fcvm.2019.00025

Wang W, Gu H, Li W, Lin Y, Yao X, Luo W, Lu F, Huang S, Shi Y, Huang Z (2021) SRC-3 knockout attenuates myocardial injury induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev 2021:6372430. https://doi.org/10.1155/2021/6372430

CAS  Article  PubMed  PubMed Central  Google Scholar 

Werbajh S, Nojek I, Lanz R, Costas MA (2000) RAC-3 is a NF-kappa B coactivator. FEBS Lett 485:195–199. https://doi.org/10.1016/s0014-5793(00)02223-7

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif