Functional Heterogeneity Within Osteoclast Populations—a Critical Review of Four Key Publications that May Change the Paradigm of Osteoclasts

Delaisse JM, Andersen TL, Kristensen HB, Jensen PR, Andreasen CM, Søe K. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone [Internet]. Elsevier; 2020;141:115628. Available from: https://doi.org/10.1016/j.bone.2020.115628.

Isales CM, Seeman E. Modeling IB. Menopause and age - related bone loss. 2019;155–161.

Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–76.

CAS  PubMed  Article  Google Scholar 

Kanis JA, Norton N, Harvey NC, Jacobson T, Johansson H, Lorentzon M, et al. SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos. 2021;16.

Office of Disease Prevention and Health Promotion, Office of the Assistant Secretary for Health, Office of the Secretary USD of H and HS. Osteoporosis Workgroup. US Department of Health and Human Services [Internet]. 2020. Available from: https://health.gov/healthypeople/about/workgroups/osteoporosis-workgroup#:~:text=In the United States%2C an,at increased risk for osteoporosis.

Schmidt CW. A measure of strength: developmental PFAS exposures and bone mineral content in adolescence. Environ Health Perspect. 2021;129:1–2.

Google Scholar 

Lewiecki EM, Ortendahl JD, Vanderpuye-Orgle J, Grauer A, Arellano J, Lemay J, Harmon AL, Broder MS, Singer AJ. Healthcare policy changes in osteoporosis can improve outcomes and reduce costs in the United States. JBMR Plus. 2019;3:1–7.

Article  Google Scholar 

Madsen CM, Jantzen C, Norring-Agerskov D, Vojdeman FJ, Abrahamsen B, Lauritzen JB, Jørgensen HL. Excess mortality following hip fracture in patients with diabetes according to age: a nationwide population-based cohort study of 154,047 hip fracture patients. Age Ageing. 2019;48:559–63.

PubMed  Article  Google Scholar 

Guzon-Illescas O, Perez Fernandez E, Crespí Villarias N, Quirós Donate FJ, Peña M, Alonso-Blas C, et al. Mortality after osteoporotic hip fracture: incidence, trends, and associated factors. J Orthop Surg Res. 2019;14:1–9.

Article  Google Scholar 

Bliuc D, Center JR. Determinants of mortality risk following osteoporotic fractures. Curr Opin Rheumatol United States. 2016;28:413–9.

Article  Google Scholar 

Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures [Internet]. Osteoporos. Int. London : Springer-Verlag London Limited ; 2000. p. 556–561. Available from: https://go.exlibris.link/hdQ3bNBT

Cummings SR, Lui LY, Eastell R, Allen IE. Association between drug treatments for patients with osteoporosis and overall mortality rates: a meta-analysis. JAMA Intern Med. 2019;179:1491–500.

PubMed  PubMed Central  Article  Google Scholar 

Alarkawi D, Bliuc D, Tran T, Ahmed LA, Emaus N, Bjørnerem A, Jørgensen L, Christoffersen T, Eisman JA, Center JR. Impact of osteoporotic fracture type and subsequent fracture on mortality: the Tromsø Study. Osteoporos Int. 2020;31:119–30.

CAS  PubMed  Article  Google Scholar 

Zanker J, Duque G. Osteoporosis in older persons: old and new players. J Am Geriatr Soc. 2019;67:831–40.

PubMed  Article  Google Scholar 

de Vries TJ, Schoenmaker T, Hooibrink B, Leenen PJM, Everts V. Myeloid blasts are the mouse bone marrow cells prone to differentiate into osteoclasts. J Leukoc Biol. 2009;85:919–27.

PubMed  Article  CAS  Google Scholar 

Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park IH, Wagner EF, Keller GM. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood. 2010;115:2769–76.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cairoli E, Eller-Vainicher C, Ulivieri FM, Zhukouskaya VV, Palmieri S, Morelli V, Beck-Peccoz P, Chiodini I. Factors associated with bisphosphonate treatment failure in postmenopausal women with primary osteoporosis. Osteoporos Int. 2014;25:1401–10.

CAS  PubMed  Article  Google Scholar 

Møller AMJ, Delaisse JM, Olesen JB, Bechmann T, Madsen JS, Søe K. Zoledronic acid is not equally potent on osteoclasts generated from different individuals. JBMR Plus. 2020;4:1–13. This paper studies the varying effect of zoledronic acid on osteoclasts obtained from different individuals in vitro.

McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184:1330-1347.e13. This paper studies the recycling of osteoclasts via daughter cells known as osteomorphs. Osteomorphs may be involved in the regulation of bone resorption.

Madel MB, Ibáñez L, Ciucci T, Halper J, Rouleau M, Boutin A, et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of cx3cr1. Elife. 2020;9:1–22. This paper provides new insights into inflammatory osteoclast heterogeneity.

Smieszek A, Marcinkowska K, Pielok A, Sikora M. The role of miR-21 in osteoblasts – osteoclasts. Cells. 2020;9:1–21.

Article  CAS  Google Scholar 

Møller AMJ, Delaissé JM, Olesen JB, Madsen JS, Canto LM, Bechmann T, et al. Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Res [Internet]. Springer US; 2020;8. Available from: https://doi.org/10.1038/s41413-020-0102-7. This paper studies the effect of age and menopause on osteoclast precursors and their subsequent effect leading to aggressive bone resorption.

Yi L, Li Z, Jiang H, Cao Z, Liu J, Zhang X. Gene modification of transforming growth factor β (TGF-β) and interleukin 10 (IL-10) in suppressing Mt sonicate induced osteoclast formation and bone absorption. Med. Sci. Monit. 2018. p. 5200–7.

Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature [Internet]. Springer US; 2019;568:541–5. Available from: https://doi.org/10.1038/s41586-019-1105-7. This paper studies the developmental origin and longevity of osteoclasts, but also looks at the mechanism behind the maintenance of bones after birth in mice.

Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. United States. 1994;55:273–86.

CAS  Article  Google Scholar 

Baron R, Tross R, Vignery A. Evidence of sequential remodeling in rat trabecular bone: morphology, dynamic histomorphometry, and changes during skeletal maturation. Anat Rec. 1984;208:137–45.

CAS  PubMed  Article  Google Scholar 

Sambrook PN, Hughes DR, Nelson AE, Robinson BG, Mason RS. Osteocyte viability with glucocorticoid treatment: relation to histomorphometry. Ann Rheum Dis. 2003;62:1215–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hurley MM, Lee SK, Raisz LG, Bernecker P, Lorenzo J. Basic fibroblast growth factor induces osteoclast formation in murine bone marrow cultures. Bone [Internet]. 1998;22:309–316. Available from: https://www.sciencedirect.com/science/article/pii/S8756328297002925

Yaccoby S, Wezeman MJ, Henderson A, Cottler-Fox M, Yi Q, Barlogie B, Epstein J. Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res. 2004;64:2016–23.

CAS  PubMed  Article  Google Scholar 

Rissanen JP, Suominen MI, Peng Z, Halleen JM. Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. 2008;82:108–15.

CAS  PubMed  Article  Google Scholar 

Jaworski ZFG. Physiology and pathology of bone remodeling: cellular basis of bone structure in health and in osteoporosis. Orthop Clin North Am [Internet]. 1981;12:485–512. Available from: https://www.sciencedirect.com/science/article/pii/S0030589820313687

Tonna EA. H3-histidine and H3-thymidine autoradiographic studies of the possibility of osteoclast aging. Lab Invest [Internet]. 1966;15:435—448. Available from: http://europepmc.org/abstract/MED/5932609

Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Blal HA, et al. A subcellular map of the human proteome. Science (80- ). 2017;356:eaal3321.

The Human Protein Atlas [Internet]. Available from: https://www.proteinatlas.org/ENSG00000141968-VAV1/tissue

Tissue expression of VAV1 - Summary - The Human Protein Atlas. :2–4. Available from: https://www.proteinatlas.org/ENSG00000141968-VAV1/tissue

Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol [Internet]. Springer US; 2020;22:49–59. Available from: https://doi.org/10.1038/s41556-019-0437-8. This paper identifies an erythromyeloid progenitor (EMP)-derived osteoclast precursor population, which arises independently of the hematopoietic stem cell (HSC) lineage.

Flewitt* R. Conducting research with young children: some ethical considerations. Early Child Dev Care [Internet]. Routledge; 2005;175:553–65. Available from: https://doi.org/10.1080/03004430500131338.

Orcel P, Bielakoff J, De Vernejoul MC. Formation of multinucleated cells with osteoclast precursor features in human cord monocytes cultures. Anat Rec [Internet]. John Wiley & Sons, Ltd; 1990;226:1–9. Available from: https://doi.org/10.1002/ar.1092260102.

Penolazzi L, Pocaterra B, Tavanti E, Lambertini E, Vesce F, Gambari R, et al. Human osteoclasts differentiated from umbilical cord blood precursors are less prone to apoptotic stimuli than osteoclasts from peripheral blood. Apoptosis [Internet]. 2008;13:553–61. Available from: https://doi.org/10.1007/s10495-008-0188-7.

Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol [Internet]. John Wiley & Sons, Ltd; 2000;109:235–42. Available from: https://doi.org/10.1046/j.1365-2141.2000.01986.x.

Monaco MCG, Maric D, Salvucci O, Passeri CAL, Accorsi P, Major EO, et al. Identification of circulating CD31+CD45+ cell populations with the potential to differentiate into erythroid cells. Stem Cell Res Ther [Internet]. 2021;12:236. Available from: https://doi.org/10.1186/s13287-021-02311-y.

Yang C-T, French A, Goh PA, Pagnamenta A, Mettananda S, Taylor J, et al. Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins. Br J Haematol [Internet]. John Wiley & Sons, Ltd; 2014;166:435–48. Available from: https://doi.org/10.1111/bjh.12910.

Heppe DHM, Medina-Gomez C, de Jongste JC, Raat H, Steegers EAP, Hofman A, et al. Fetal and childhood growth patterns associated with bone mass in school-age children: the Generation R Study. J Bone Miner Res [Internet]. John Wiley & Sons, Ltd; 2014;29:2584–93. Available from: https://doi.org/10.1002/jbmr.2299.

Vidulich L, Norris SA, Cameron N, Pettifor JM. Infant programming of bone size and bone mass in 10-year-old black and white South African children. Paediatr Perinat Epidemiol [Internet]. John Wiley & Sons, Ltd; 2007;21:354–62. Available from: https://doi.org/10.1111/j.1365-3016.2007.00806.x.

Balasuriya CND, Evensen KAI, Mosti MP, Brubakk A-M, Jacobsen GW, Indredavik MS, et al. Peak bone mass and bone microarchitecture in adults born with low birth weight preterm or at term: a cohort study. J Clin Endocrinol Metab [Internet]. 2017;102:2491–500. Available from: https://doi.org/10.1210/jc.2016-3827.

Laitinen J, Kiukaanniemi K, Heikkinen J, Koiranen M, Nieminen P, Sovio U, et al. Body size from birth to adulthood and bone mineral content and density at 31 years of age: results from the northern Finland 1966 birth cohort study. Osteoporos Int [Internet]. 2005;16:1417–24. Available from: https://doi.org/10.1007/s00198-005-1857-9.

Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009;51:5–17.

Article  Google Scholar 

Marks SC, Seifert MF. The lifespan of osteoclasts: experimental studies using the giant granule cytoplasmic marker characteristic of beige mice. Bone [Internet]. 1985;6:451–5 Available from: https://www.sciencedirect.com/science/article/pii/8756328285902236.

PubMed  Article  Google Scholar 

Jaworski ZFG, Duck B, Sekaly G. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat. 1981;133:397–405.

CAS  PubMed  PubMed Central  Google Scholar 

Wang B, Jin H, Zhu M, Li J, Zhao L, Zhang Y, et al. Chondrocyte β-catenin signaling regulates postnatal bone remodeling through modulation of osteoclast formation in a murine model. Arthritis Rheumatol [Internet]. John Wiley & Sons, Ltd; 2014;66:107–20. Available from: https://doi.org/10.1002/art.38195.

Rauch F. The dynamics of bone structure development during pubertal growth. J Musculoskelet Neuronal Interact. 2012;12:1–6.

CAS  PubMed  Google Scholar 

Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation. Endocr Rev [Internet]. 1992;13:66–80. Available from: https://doi.org/10.1210/edrv-13-1-66.

Mizuno H, Kikuta J, Ishii M. In vivo live imaging of bone cells. Histochem Cell Biol [Internet]. Springer Berlin Heidelberg; 2018;149:417–22. Available from: https://doi.org/10.1007/s00418-018-1638-0.

Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol [Internet]. Elsevier Ltd; 2017;5:898–907. Available from: https://doi.org/10.1016/S2213-8587(17)30188-2.

Bi H, Chen X, Gao S, Yu X, Xiao J, Zhang B, Liu X, Dai M. Key triggers of osteoclast-related diseases and available strategies for targeted therapies: a review. Front Med. 2017;4:1–10.

Article  Google Scholar 

Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature. Nature Publishing Group; 2009;458:524–528.

Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med. 2010;207:2793–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol [Internet]. Nature Publishing Group; 2018;14:229–45. Available from: https://doi.org/10.1038/nrrheum.2018.37.

Baron R, Vignery A. Behavior of osteoclasts during a rapid change in their number induced by high doses of parathyroid hormone or calcitonin in intact rats. Metab Bone Dis Relat Res. 1981;2:339–46.

CAS  Article  Google Scholar 

Jansen IDC, Vermeer JAF, Bloemen V, Stap J, Everts V. Osteoclast fusion and fission. Calcif Tissue Int. 2012;91:159.

CAS  PubMed Central  Article  Google Scholar 

Solari F, Domenget C, Gire V, Woods C, Lazarides E, Rousset B, Jurdic P. Multinucleated cells can continuously generate mononucleated cells in the absence of mitosis: a study of cells of the avian osteoclast lineage. J Cell Sci. 1995;108:3233–41.

CAS  PubMed  Article  Google Scholar 

Burckhardt P, Faouzi M, Buclin T, Lamy O. Fractures after denosumab discontinuation: a retrospective study of 797 cases. J Bone Miner Res. 2021;36:1717–28.

CAS  PubMed  Article  Google Scholar 

Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC, Grazette L, San Martin J, Gallagher JC. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96:972–80.

CAS  PubMed  Article  Google Scholar 

Dufrançais O, Mascarau R, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cell Mol Life Sci [Internet]. Springer International Publishing; 2021;78:6087–104. Available from: https://doi.org/10.1007/s00018-021-03875-x.

Huynh N, Vonmoss L, Smith D, Rahman I, Felemban MF, Zuo J, et al. Characterization of regulatory extracellular vesicles from osteoclasts. J Dent Res. 2016;95:673–9.

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif