How Dietary Fibre, Acting via the Gut Microbiome, Lowers Blood Pressure

Beaney T, Burrell LM, Castillo RR, Charchar FJ, Cro S, Damasceno A, et al. May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension. Eur Heart J. 2019;40(25):2006–17. https://doi.org/10.1093/eurheartj/ehz300.

Article  PubMed  PubMed Central  Google Scholar 

Beaney T, Schutte AE, Stergiou GS, Borghi C, Burger D, Charchar F, et al. May Measurement Month 2019: The Global Blood Pressure Screening Campaign of the International Society of Hypertension. Hypertension. 2020;76(2):333–41. https://doi.org/10.1161/HYPERTENSIONAHA.120.14874.

CAS  Article  PubMed  Google Scholar 

Collaborators GBDRF. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2.

Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International society of hypertension global hypertension practice guidelines. Hypertension. 2020;75(6):1334–57. https://doi.org/10.1161/HYPERTENSIONAHA.120.15026.

CAS  Article  PubMed  Google Scholar 

• Collaborators GBDD. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://doi.org/10.1016/S0140-6736(19)30041-8. The latest Global Burden of Disease Study highlighting the importance of foods high in fibre for non-communicable diseases.

Article  Google Scholar 

Wright A, Burstyn PG, Gibney MJ. Dietary fibre and blood pressure. Br Med J. 1979;2(6204):1541–3. https://doi.org/10.1136/bmj.2.6204.1541.

CAS  Article  PubMed  PubMed Central  Google Scholar 

•• Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434–45. https://doi.org/10.1016/S0140-6736(18)31809-9. A large scale systematic review and meta-analysis showing fibre intake is indeed associated with a lower incidence of CVD and lower BP.

CAS  Article  PubMed  Google Scholar 

Reynolds AN, Akerman A, Kumar S, Diep Pham HT, Coffey S, Mann J. Dietary fibre in hypertension and cardiovascular disease management: systematic review and meta-analyses. BMC Med. 2022;20(1):139. https://doi.org/10.1186/s12916-022-02328-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

•• Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;135(10):964–77. https://doi.org/10.1161/CIRCULATIONAHA.116.024545. The first study to show that prebiotic fibre and chronic acetate intake are BP-lowering and cardioprotective by modulating the gut microbiota.

CAS  Article  PubMed  Google Scholar 

Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15:20–32. https://doi.org/10.1038/nrcardio.2017.120.

Article  PubMed  Google Scholar 

Guo R, Li N, Yang R, Liao XY, Zhang Y, Zhu BF, et al. Effects of the Modified DASH Diet on Adults With Elevated Blood Pressure or Hypertension: A Systematic Review and Meta-Analysis. Front Nutr. 2021;8: 725020. https://doi.org/10.3389/fnut.2021.725020.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10. https://doi.org/10.1056/NEJM200101043440101.

Cicero AFG, Veronesi M, Fogacci F. Dietary Intervention to Improve Blood Pressure Control: Beyond Salt Restriction. High Blood Press Cardiovasc Prev. 2021;28(6):547–53. https://doi.org/10.1007/s40292-021-00474-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nissensohn M, Román-Viñas B, Sánchez-Villegas A, Piscopo S, Serra-Majem L. The effect of the Mediterranean diet on hypertension: a systematic review and meta-analysis. J Nutr Educ Behav. 2016;48(1):42-53.e1. https://doi.org/10.1016/j.jneb.2015.08.023.

Article  PubMed  Google Scholar 

Rinott E, Meir AY, Tsaban G, Zelicha H, Kaplan A, Knights D, et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med. 2022;14(1):29. https://doi.org/10.1186/s13073-022-01015-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–16. https://doi.org/10.1038/s41575-020-00375-4. A comprehensive review about dietary fibre and their actions in the gastrointestinal system.

CAS  Article  PubMed  Google Scholar 

• So D, Gibson PR, Muir JG, Yao CK. Dietary fibres and IBS: translating functional characteristics to clinical value in the era of personalised medicine. Gut. 2021;70(12):2383–94. https://doi.org/10.1136/gutjnl-2021-324891. A detailed review about the actions of different types of fibre to different regions of the intestine.

CAS  Article  PubMed  Google Scholar 

• Berg G, Rybakova D, Fischer D, Cernava T, Verges MC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103. https://doi.org/10.1186/s40168-020-00875-0. Updated definitions used in the gut microbiome field.

Article  PubMed  PubMed Central  Google Scholar 

•• Lancaster SM, Lee-McMullen B, Abbott CW, Quijada JV, Hornburg D, Park H, et al. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe. 2022. https://doi.org/10.1016/j.chom.2022.03.036. A large scale cross-over clinical trial reported that each type of fibre is associated with fibre-dependent biochemical and microbial responses.

Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8): e1002533. https://doi.org/10.1371/journal.pbio.1002533.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Maier TV, Lucio M, Lee LH, VerBerkmoes NC, Brislawn CJ, Bernhardt J, et al. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio. 2017;8(5). https://doi.org/10.1128/mBio.01343-17.

• Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020;27(3):389-404.e6. https://doi.org/10.1016/j.chom.2020.01.006. Description of precision microbiome changes according to types of dietary fibre.

CAS  Article  PubMed  Google Scholar 

Dobranowski PA, Stintzi A. Resistant starch, microbiome, and precision modulation. Gut Microbes. 2021;13(1):1926842. https://doi.org/10.1080/19490976.2021.1926842.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bilotta AJ, Cong Y. Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precision Clin Med. 2019;2(2):110–9. https://doi.org/10.1093/pcmedi/pbz008.

Article  PubMed  PubMed Central  Google Scholar 

Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–53 e21. https://doi.org/10.1016/j.cell.2016.10.043.

• Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018;215(1):21–33. https://doi.org/10.1084/jem.20171773. A comprehensive review about the immune system in hypertension.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther. 2018;48(1):15–34. https://doi.org/10.1111/apt.14689. A comprehensive review about the role of SCFAs in human intestinal and inflammatory diseases.

CAS  Article  PubMed  Google Scholar 

Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.

CAS  Article  Google Scholar 

•• Nakai M, Ribeiro RV, Stevens BR, Gill P, Muralitharan RR, Yiallourou S, et al. Essential hypertension is associated with changes in gut microbial metabolic pathways: a multisite analysis of ambulatory blood pressure. Hypertension. 2021;78(3):804–15. https://doi.org/10.1161/HYPERTENSIONAHA.121.17288. A multi-site cohort study assessing both the plasma and faecal levels of SCFAs in hypertension diagnosed with 24-h BP monitoring. It discovered that circulating SCFAs were higher but the expression of GPCRs was lower in human hypertesion.

CAS  Article  PubMed  Google Scholar 

Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–71. https://doi.org/10.1016/j.chom.2015.03.005.

CAS  Article  PubMed  PubMed Central  Google Scholar 

R Muralitharan R, Marques FZ. Diet-related gut microbial metabolites and sensing in hypertension. J Hum Hypertens. 2021;35(2):162–9. https://doi.org/10.1038/s41371-020-0388-3.

Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 2006;324(3):353–60. https://doi.org/10.1007/s00441-005-0140-x.

CAS  Article  PubMed  Google Scholar 

Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9. https://doi.org/10.1074/jbc.M211609200.

CAS  Article  PubMed  Google Scholar 

den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 2013;305(12):G900–10. https://doi.org/10.1152/ajpgi.00265.2013.

CAS  Article  Google Scholar 

Fleming SE, Choi SY, Fitch MD. Absorption of short-chain fatty acids from the rat cecum in vivo. J Nutr. 1991;121(11):1787–97. https://doi.org/10.1093/jn/121.11.1787.

CAS  Article  PubMed  Google Scholar 

Nøhr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW, et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience. 2015;290:126–37. https://doi.org/10.1016/j.neuroscience.2015.01.040.

CAS  Article  PubMed  Google Scholar 

• Tan JK, McKenzie C, Marino E, Macia L, Mackay CR. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu Rev Immunol. 2017;35:371–402. https://doi.org/10.1146/annurev-immunol-051116-052235. Comprehensive review about the several roles of metabolite-sensing GPCRs to the immune system.

CAS  Article  PubMed  Google Scholar 

Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem. 2008;19(9):587–93. https://doi.org/10.1016/j.jnutbio.2007.08.002.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif