Advances in DBS Technology and Novel Applications: Focus on Movement Disorders

Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep brain stimulation in movement disorders: from experimental surgery to evidence-based therapy. Mov Disord. 2019;34:1795–810.

PubMed  Article  Google Scholar 

Krack P, Martinez-Fernandez R, del Alamo M, Obeso JA. Current applications and limitations of surgical treatments for movement disorders: surgical treatments for movement disorders. Mov Disord. 2017;32:36–52.

PubMed  Article  Google Scholar 

Bove F, Fraix V, Cavallieri F, et al. Dementia and subthalamic deep brain stimulation in Parkinson disease: a long-term overview. Neurology. 2020;95:e384–92.

PubMed  Article  Google Scholar 

Bove F, Mulas D, Cavallieri F, et al. Long-term outcomes (15 years) after subthalamic nucleus deep brain stimulation in patients with Parkinson disease. Neurology. 2021;97:e254–62. This study shows the sustained effect of STN DBS in PD at 15 years. Both motor effects and quality of life remain significantly improved when compared to baseline.

Article  Google Scholar 

Dafsari HS, Silverdale M, Strack M, et al. Nonmotor symptoms evolution during 24 months of bilateral subthalamic stimulation in Parkinson’s disease: 24 months nonmotor effects of STN-DBS in PD. Mov Disord. 2018;33:421–30.

PubMed  Article  Google Scholar 

Klepitskaya O, Liu Y, Sharma S, Sillau SH, Tsai J, Walters AS. Deep brain stimulation improves restless legs syndrome in patients with Parkinson disease. Neurology. 2018;91:e1013–21.

PubMed  Article  Google Scholar 

Lachenmayer ML, Mürset M, Antih N, et al. Subthalamic and pallidal deep brain stimulation for Parkinson’s disease—meta-analysis of outcomes. Npj Park Dis. 2021;7:77.

Article  Google Scholar 

Wong JK, Cauraugh JH, Ho KWD, et al. STN vs. GPi deep brain stimulation for tremor suppression in Parkinson disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2019;58:56–62.

PubMed  Article  Google Scholar 

Wong JK, Viswanathan VT, Nozile-Firth KS, Eisinger RS, Leone EL, Desai AM, Foote KD, Ramirez-Zamora A, Okun MS, Wagle Shukla A. STN versus GPi deep brain stimulation for action and rest tremor in Parkinson’s disease. Front Hum Neurosci. 2020;14:578615.

PubMed  PubMed Central  Article  Google Scholar 

Chandra V, Hilliard JD, Foote KD. Deep brain stimulation for the treatment of tremor. J Neurol Sci. 2022;435:120190. This review gives a thorough insight of DBS in tremor (targets, indications, outcomes) and surgical techniques.

PubMed  Article  Google Scholar 

Schuepbach WMM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368:610–22.

CAS  PubMed  Article  Google Scholar 

Lhommée E, Wojtecki L, Czernecki V, et al. Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson’s disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol. 2018;17:223–31.

PubMed  Article  Google Scholar 

Barbe MT, Tonder L, Krack P, et al. deep brain stimulation for freezing of gait in Parkinson’s disease with early motor complications. Mov Disord. 2020;35:82–90.

PubMed  Article  Google Scholar 

Stoker V, Krack P, Tonder L, et al. Deep brain stimulation impact on social and occupational functioning in Parkinson’s disease with early motor complications. Mov Disord Clin Pract. 2020;7:672–80.

PubMed  PubMed Central  Article  Google Scholar 

Moro E, LeReun C, Krauss JK, Albanese A, Lin J-P, Walleser Autiero S, Brionne TC, Vidailhet M. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24:552–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tsuboi T, Jabarkheel Z, Zeilman PR, Barabas MJ, Foote KD, Okun MS, Wagle Shukla A. Longitudinal follow-up with VIM thalamic deep brain stimulation for dystonic or essential tremor. Neurology. 2020;94:e1073–84.

PubMed  PubMed Central  Article  Google Scholar 

Miterko LN, Baker KB, Beckinghausen J, et al. Consensus paper: experimental neurostimulation of the cerebellum. Cerebellum. 2019;18:1064–97.

PubMed  PubMed Central  Article  Google Scholar 

Brown EG, Bledsoe IO, Luthra NS, Miocinovic S, Starr PA, Ostrem JL. Cerebellar deep brain stimulation for acquired hemidystonia. Mov Disord Clin Pract. 2020;7:188–93.

PubMed  PubMed Central  Article  Google Scholar 

Horisawa S, Arai T, Suzuki N, Kawamata T, Taira T. The striking effects of deep cerebellar stimulation on generalized fixed dystonia: case report. J Neurosurg. 2020;132:712–6.

Article  Google Scholar 

Diniz JM, Cury RG, Iglesio RF, Lepski GA, França CC, Barbosa ER, de Andrade DC, Teixeira MJ, Duarte KP. Dentate nucleus deep brain stimulation: technical note of a novel methodology assisted by tractography. Surg Neurol Int. 2021;12:400.

PubMed  PubMed Central  Article  Google Scholar 

Wharen RE, Okun MS, Guthrie BL, et al. Thalamic DBS with a constant-current device in essential tremor: a controlled clinical trial. Parkinsonism Relat Disord. 2017;40:18–26.

PubMed  Article  Google Scholar 

Dallapiazza RF, Lee DJ, De Vloo P, Fomenko A, Hamani C, Hodaie M, Kalia SK, Fasano A, Lozano AM. Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry. 2019;90:474–82.

PubMed  Article  Google Scholar 

Cury RG, Fraix V, Castrioto A, Pérez Fernández MA, Krack P, Chabardes S, Seigneuret E, Alho EJL, Benabid A-L, Moro E. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology. 2017;89:1416–23.

PubMed  Article  Google Scholar 

Giordano M, Caccavella VM, Zaed I, Foglia Manzillo L, Montano N, Olivi A, Polli FM. Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psych. 2020;91:1270–8.

Article  Google Scholar 

Paschen S, Forstenpointner J, Becktepe J, Heinzel S, Hellriegel H, Witt K, Helmers A-K, Deuschl G. Long-term efficacy of deep brain stimulation for essential tremor: an observer-blinded study. Neurology. 2019;92:e1378–86.

PubMed  Article  Google Scholar 

Martinez-Ramirez D, Jimenez-Shahed J, Leckman JF, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: the International Tourette Syndrome Deep Brain Stimulation Public Database and Registry. JAMA Neurol. 2018;75:353.

PubMed  PubMed Central  Article  Google Scholar 

Johnson KA, Fletcher PT, Servello D, et al. Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. J Neurol Neurosurg Psychiatry. 2019;90:1078–90. This study confirms the efficacy of GPi DBS in Tourette syndrome and strongly suggests that superior or medial GPi locations may be better in controlling OCD.

PubMed  Article  Google Scholar 

Welter M-L, Houeto J-L, Worbe Y, et al. Long-term effects of anterior pallidal deep brain stimulation for Tourette’s syndrome: letters: new observations. Mov Disord. 2019;34:586–8.

PubMed  Article  Google Scholar 

Krauss JK, Lipsman N, Aziz T, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021;17:75–87.

PubMed  Article  Google Scholar 

Choe C, Hidding U, Schaper M, Gulberti A, Köppen J, Buhmann C, Gerloff C, Moll CKE, Hamel W, Pötter-Nerger M. Thalamic short pulse stimulation diminishes adverse effects in essential tremor patients. Neurology. 2018;91:e704–13.

PubMed  Article  Google Scholar 

Kroneberg D, Ewert S, Meyer A-C, Kühn AA. Shorter pulse width reduces gait disturbances following deep brain stimulation for essential tremor. J Neurol Neurosurg Psychiatry. 2019;90:1046–50.

PubMed  Article  Google Scholar 

Rammo RA, Ozinga SJ, White A, Nagel SJ, Machado AG, Pallavaram S, et al. Directional stimulation in Parkinson’s disease and essential tremor: the Cleveland Clinic experience. Neuromodul Technol Neural Interf. 2021. https://doi.org/10.1111/ner.13374.

Pintér D, Járdaházi E, Balás I, Harmat M, Makó T, Juhász A, et al. Antiparkinsonian drug reduction after directional versus omnidirectional bilateral subthalamic deep brain stimulation. Neuromodul Technol Neural Interf. 2022. https://doi.org/10.1016/j.neurom.2022.01.006.

Vitek JL, Jain R, Chen L, et al. Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson’s disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study. Lancet Neurol. 2020;19:491–501. This work provides class 1 evidence that new MICC STN-DBS is safe and effective. The MICC technology allows to set each plot with specific parameters, rather than a defined setting for the entire lead.

CAS  PubMed  Article  Google Scholar 

Tass PA, Qin L, Hauptmann C, Dovero S, Bezard E, Boraud T, Meissner WG. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann Neurol. 2012;72:816–20.

PubMed  Article  Google Scholar 

Arlotti M, Rosa M, Marceglia S, Barbieri S, Priori A. The adaptive deep brain stimulation challenge. Parkinsonism Relat Disord. 2016;28:12–7.

PubMed  Article  Google Scholar 

Marceglia S, Guidetti M, Harmsen IE, Loh A, Meoni S, Foffani G, Lozano AM, Volkmann J, Moro E, Priori A. Deep brain stimulation: is it time to change gears by closing the loop? J Neural Eng. 2021;18:061001.

Article  Google Scholar 

Goyal A, Goetz S, Stanslaski S, Oh Y, Rusheen AE, Klassen B, Miller K, Blaha CD, Bennet KE, Lee K. The development of an implantable deep brain stimulation device with simultaneous chronic electrophysiological recording and stimulation in humans. Biosens Bioelectron. 2021;176:112888.

CAS  PubMed  Article  Google Scholar 

Arlotti M, Colombo M, Bonfanti A, et al. A new implantable closed-loop clinical neural interface: first application in Parkinson’s disease. Front Neurosci. 2021;15:763235.

PubMed  PubMed Central  Article  Google Scholar 

Priori A, Foffani G, Pesenti A, Tamma F, Bianchi A, Pellegrini M, Locatelli M, Moxon K, Villani R. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189:369–79.

CAS  PubMed  Article  Google Scholar 

Brown P, Williams D. Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol. 2005;116:2510–9.

PubMed  Article  Google Scholar 

Kühn AA, Kupsch A, Schneider G-H, Brown P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease: STN activity and motor improvement. Eur J Neurosci. 2006;23:1956–60.

PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif