Three-Dimensional Near-Infrared Specimen Mapping Can Identify the Distance from the Tumor to the Surgical Margin During Resection of Pulmonary Ground Glass Opacities

Krist AH, Davidson KW, Mangione CM et al (2021) Screening for lung cancer: US preventive services task force recommendation statement. JAMA 325(10):962–970

Article  Google Scholar 

Aliperti LA, Predina JD, Vachani A, Singhal S (2011) Local and systemic recurrence is the achilles heel of cancer surgery. Ann Surg Oncol 18(3):603–607

Article  Google Scholar 

Nakao M, Yoshida J, Goto K et al (2012) Long-term outcomes of 50 cases of limited-resection trial for pulmonary ground-glass opacity nodules. J Thorac Oncol 7(10):1563–1566

Article  Google Scholar 

Yoshida J, Ishii G, Yokose T et al (2010) Possible delayed cut-end recurrence after limited resection for ground-glass opacity adenocarcinoma, intraoperatively diagnosed as noguchi type B, in three patients. J Thorac Oncol 5(4):546–550

Article  Google Scholar 

Tringale KR, Pang J, Nguyen QT (2018) Image-guided surgery in cancer: a strategy to reduce incidence of positive surgical margins. Wiley Interdiscip Rev Syst Biol Med 10(3):e1412

Article  Google Scholar 

Kennedy GT, Azari FS, Bernstein E et al (2021) 3D specimen mapping expedites frozen section diagnosis of nonpalpable ground glass opacities. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2021.09.069

Article  PubMed  Google Scholar 

Sienko A, Allen TC, Zander DS, Cagle PT (2005) Frozen section of lung specimens. Arch Pathol Lab Med 129(12):1602–1609

Article  Google Scholar 

Azari F, Kennedy G, Bernstein E et al (2021) Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings. J Biomed Opt 26:5

Article  Google Scholar 

Kennedy GT, Okusanya OT, Keating JJ et al (2015) The optical biopsy: a novel technique for rapid intraoperative diagnosis of primary pulmonary adenocarcinomas. Ann Surg 262(4):602–609

Article  Google Scholar 

Kennedy GT, Azari FS, Bernstein E et al (2022) A prostate specific membrane antigen-targeted near-infrared conjugate for identifying pulmonary squamous cell carcinoma during resection image-guided resection of pulmonary squamous cell carcinoma. Mol Cancer Ther 21:546–554. https://doi.org/10.1158/1535-7163.MCT-21-0821

CAS  Article  PubMed  Google Scholar 

Kennedy GT, Azari FS, Bernstein E et al (2021) Targeted intraoperative molecular imaging for localizing nonpalpable tumors and quantifying resection margin distances. JAMA Surg 156(11):1043–1050

Article  Google Scholar 

Kennedy GT, Newton A, Predina J, Singhal S (2017) Intraoperative near-infrared imaging of mesothelioma. Transl Lung Cancer Res 6(3):279–284

CAS  Article  Google Scholar 

Tipirneni KE, Warram JM, Moore LS et al (2017) Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg 266(1):36–47

Article  Google Scholar 

van Dam GM, Themelis G, Crane LMA et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17(10):1315–1319

Article  Google Scholar 

Kennedy GT, Azari FS, Bernstein E et al (2022) Targeted detection of cancer at the cellular level during biopsy by near-infrared confocal laser endomicroscopy. Nat Commun 13(1):1–9

Google Scholar 

Azari F, Kennedy G, Singhal S (2020) Intraoperative detection and assessment of lung nodules. Surg Oncol Clin N Am 29(4):525–541

Article  Google Scholar 

Tummers WS, Warram JM, Tipirneni KE et al (2017) Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res 77(9):2197–2206

CAS  Article  Google Scholar 

Predina JD, Newton AD, Keating J et al (2018) A phase I clinical trial of targeted intraoperative molecular imaging for pulmonary adenocarcinomas. Ann Thorac Surg 105(3):901–908

Article  Google Scholar 

Gangadharan S, Sarkaria I, Rice D et al (2021) Multi-institutional phase 2 clinical trial of intraoperative molecular imaging of lung cancer. Ann Thorac Surg 112:1150–1159

Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129

CAS  Article  Google Scholar 

Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

CAS  Article  Google Scholar 

Lakomkin N, Van Gompel JJ, Post KD, Cho SS, Lee JYK, Hadjipanayis CG (2021) Fluorescence guided surgery for pituitary adenomas. J Neurooncol 151(3):403–413

Article  Google Scholar 

Newton AD, Predina JD, Frenzel-Sulyok LG, Low PS, Singhal S, Roses RE (2021) Intraoperative molecular imaging utilizing a folate receptor-targeted near-infrared probe can identify macroscopic gastric adenocarcinomas. Mol Imaging Biol 23(1):11–17

CAS  Article  Google Scholar 

Fumimoto S, Sato K, Hanaoka N, Katsumata T (2021) Identification of factors affecting the surgical margin in wedge resection using preoperative lipiodol marking. J Thorac Dis 13(6):3383–3391

Article  Google Scholar 

Park CH, Lee SM, Lee JW et al (2020) Hook-wire localization versus lipiodol localization for patients with pulmonary lesions having ground-glass opacity. J Thorac Cardiovasc Surg 159(4):1571-1579.e2

Article  Google Scholar 

Hancock JG, Rosen JE, Antonicelli A et al (2015) Impact of adjuvant treatment for microscopic residual disease after non-small cell lung cancer surgery. Ann Thorac Surg 99(2):406–413

Article  Google Scholar 

Predina JD, Keating J, Patel N, Nims S, Singhal S (2016) Clinical implications of positive margins following non-small cell lung cancer surgery. J Surg Oncol 113(3):264–269

Article  Google Scholar 

Altorki NK, Yip R, Hanaoka T et al (2014) Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid nodules. J Thorac Cardiovasc Surg 147(2):754–764

Article  Google Scholar 

Wolf AS, Swanson SJ, Yip R et al (2017) The impact of margins on outcomes after wedge resection for stage I non-small cell lung cancer. Ann Thorac Surg 104(4):1171–1178

Article  Google Scholar 

Suzuki K, Watanabe S, Wakabayashi M et al (2022) A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J Thorac Cardiovasc Surg 163:289–301

Article  Google Scholar 

Fakurnejad S, Krishnan G, Van Keulen S, et al. Intraoperative molecular imaging for ex vivo assessment of peripheral margins in oral squamous cell carcinoma. Frontiers in oncology. 2020:1476.

van Keulen S, Nishio N, Birkeland A et al (2019) The sentinel margin: intraoperative ex vivo specimen mapping using relative fluorescence intensity. Clin Cancer Res 25(15):4656–4662

Article  Google Scholar 

Kennedy GT, Azari FS, Callans D, Singhal S (2021) Stellate ganglion localization using near-infrared intraoperative imaging during cardiac sympathetic denervation. Heart Rhythm 18:1807–1808

Article  Google Scholar 

Predina JD, Newton A, Kennedy G, Lee MK, Singhal S (2017) Near-infrared intraoperative imaging can successfully identify malignant pleural mesothelioma after neoadjuvant chemotherapy. Mol Imaging 16:1536012117723785

Article  Google Scholar 

Kennedy GT, Azari FS, Newton AD et al (2021) Use of near-infrared molecular imaging for localizing visually occult parathyroid glands in ectopic locations. JAMA Otolaryngol Head Neck Surg 147(7):669–671

Article  Google Scholar 

留言 (0)

沒有登入
gif