Sickle Cell Disease and Kidney

Kato G.J. Piel F.B. Reid C.D. et al.

Sickle cell disease.

Nat Rev Dis Primers. 2018; 4 (18010): 1-22View in Article Google ScholarPiel F.B. Steinberg M.H. Rees D.C.

Sickle cell disease.

N Engl J Med. 2017; 376: 1561-1573View in Article Google ScholarFrenette P.S. Atweh G.F.

Sickle cell disease: old discoveries, new concepts, and future promise.

J Clin Invest. 2007; 117: 850-858View in Article Google ScholarGurbanov K. Rubinstein I. Hoffman A. Abassi Z. Better O.S. Winaver J.

Differential regulation of renal regional blood flow by endothelin-1.

Am J Physiol. 1996; 271: F1166-F1172View in Article Google ScholarNath K.A. Grande J.P. Haggard J.J. et al.

Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease.

Am J Pathol. 2001; 158: 893-903View in Article Google ScholarNaik R.P. Derebail V.K.

The spectrum of sickle hemoglobin-related nephropathy: from sickle cell disease to sickle trait.

Expert Rev Hematol. 2017; 10: 1087-1094View in Article Google ScholarAtaga K.I. Brittain J.E. Moore D. et al.

Urinary albumin excretion is associated with pulmonary hypertension in sickle cell disease: potential role of soluble fms-like tyrosine kinase-1.

Eur J Haematol. 2010; 85: 257-263View in Article Google ScholarNath K.A. Hebbel R.P.

Sickle cell disease: renal manifestations and mechanisms.

Nat Rev Nephrol. 2015; 11: 161-171View in Article Google ScholarDrawz P. Ayyappan S. Nouraie M. et al.

Kidney disease among patients with sickle cell disease, hemoglobin SS and SC.

Clin J Am Soc Nephrol. 2016; 11: 207-215View in Article Google ScholarGuasch A. Navarrete J. Nass K. et al.

Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure.

J Am Soc Nephrol. 2006; 17: 2228-2235View in Article Google ScholarGuasch A. Zayas C.F. Eckman J.R. et al.

Evidence that microdeletions in the alpha globin gene protect against the development of sickle cell glomerulopathy in humans.

J Am Soc Nephrol. 1999; 10: 1014-1019View in Article Google ScholarSaraf S.L. Shah B.N. Zhang X. et al.

APOL1, α-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia.

Haematologica. 2017; 102: e1-e6View in Article Google ScholarAshley-Koch A.E. Okocha E.C. Garrett M.E. et al.

MYH9 and APOL1 are both associated with sickle cell disease nephropathy.

Br J Haematol. 2011; 155: 386-394View in Article Google ScholarNolan V.G. Ma Q. Cohen H.T. et al.

Estimated glomerular filtration rate in sickle cell anemia is associated with polymorphisms of bone morphogenetic protein receptor 1B.

Am J Hematol. 2007; 82: 179-184View in Article Google ScholarStatius van Eps L.W. Pinedo-Veels C. de Vries G.H. de Koning J.

Nature of concentrating defect in sickle-cell nephropathy.

Microradioangiographic Studies Lancet. 1970; 1: 450-452View in Article Google ScholarStatius van Eps L.W. Schouten H. La Porte-Wijsman L.W. Struyker Boudier A.M.

The influence of red blood cell transfusions on the hyposthenuria and renal hemodynamics of sickle cell anemia.

Clin Chim Acta. 1967; 17: 449-461View in Article Google ScholarSharpe C.C. Thein S.L.

Sickle cell nephropathy - a practical approach.

Br J Haematol. 2011; 155: 287-297View in Article Google ScholarMaurel S. Stankovic Stojanovic K. Avellino V. et al.

Prevalence and correlates of metabolic acidosis among patients with homozygous sickle cell disease.

Clin J Am Soc Nephrol. 2014; 9: 648-653View in Article Google ScholarDeFronzo R.A. Taufield P.A. Black H. McPhedran P. Cooke C.R.

Impaired renal tubular potassium secretion in sickle cell disease.

Ann Intern Med. 1979; 90: 310-316View in Article Google ScholarBatlle D. Itsarayoungyuen K. Arruda J.A. Kurtzman N.A.

Hyperkalemic hyperchloremic metabolic acidosis in sickle cell hemoglobinopathies.

Am J Med. 1982; 72: 188-192View in Article Google ScholarCazenave M. Audard V. Bertocchio J.P. et al.

Tubular acidification defect in adults with sickle cell disease.

Clin J Am Soc Nephrol. 2020; 15: 16-24View in Article Google ScholarKiryluk K. Jadoon A. Gupta M. Radhakrishnan J.

Sickle cell trait and gross hematuria.

Kidney Int. 2007; 71: 706-710View in Article Google ScholarSharpe C.C. Thein S.L.

How I treat renal complications in sickle cell disease.

Blood. 2014; 123: 3720-3726View in Article Google ScholarPegelow C.H. Colangelo L. Steinberg M. et al.

Natural history of blood pressure in sickle cell disease: risks for stroke and death associated with relative hypertension in sickle cell anemia.

Am J Med. 1997; 102: 171-177View in Article Google ScholarWare R.E. Rees R.C. Sarnaik S.A. et al.

Renal function in infants with sickle cell anemia: baseline data from the BABY HUG trial.

J Pediatr. 2010; 156: 66-70View in Article Google ScholarAygun B. Mortier N.A. Smeltzer M.P. Shulkin B.L. Hankins J.S. Ware R.E.

Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia.

Am J Hematol. 2013; 88: 116-119View in Article Google ScholarDerebail V.K. Ciccone E.J. Zhou Q. Kilgore R.R. Cai J. Ataga K.I.

Progressive decline in estimated GFR in patients with sickle cell disease: an Observational cohort study.

Am J Kidney Dis. 2019; 74: 47-55View in Article Google ScholarMaigne G. Ferlicot S. Galacteros F. et al.

Glomerular lesions in patients with sickle cell disease.

Medicine (Baltimore). 2010; 89: 18-27View in Article Google ScholarNiss O. Lane A. Asnani M.R. et al.

Progression of albuminuria in patients with sickle cell anemia: a multicenter, longitudinal study.

Blood Adv. 2020; 4: 1501-1511View in Article Google ScholarQuek L. Sharpe C. Dutt N. et al.

Acute human parvovirus B19 infection and nephrotic syndrome in patients with sickle cell disease.

Br J Haematol. 2010; 149: 289-291View in Article Google ScholarAtaga K.I. Derebail V.K. Archer D.R.

The glomerulopathy of sickle cell disease.

Am J Hematol. 2014; 89: 907-914View in Article Google ScholarGosmanova E.O. Zaidi S. Wan J.Y. et al.

Prevalence and progression of chronic kidney disease in adult patients with sickle cell disease.

J Investig Med. 2014; 62: 804-807View in Article Google ScholarNaik R.P. Irvin M.R. Judd S. et al.

Sickle cell trait and the risk of ESRD in blacks.

J Am Soc Nephrol. 2017; 28: 2180-2187View in Article Google ScholarAbbott K.C. Hypolite I.O. Agodoa L.Y.

Sickle cell nephropathy at end-stage renal disease in the United States: patient characteristics and survival.

Clin Nephrol. 2002; 58: 9-15View in Article Google ScholarMcClellan A.C. Luthi J.C. Lynch J.R. et al.

High one year mortality in adults with sickle cell disease and end-stage renal disease.

Br J Haematol. 2012; 159: 360-367View in Article Google ScholarQuinn C.T. Rogers Z.R. McCavit T.L. Buchanan G.R.

Improved survival of children and adolescents with sickle cell disease.

Blood. 2010; 115: 3447-3452View in Article Google ScholarBae S. Johnson M. Massie A.B. et al.

Mortality and access to kidney transplantation in patients with sickle cell disease-associated kidney failure.

Clin J Am Soc Nephrol. 2021; 16: 407-414View in Article Google ScholarAudard V. Homs S. Habibi A. et al.

Acute kidney injury in sickle patients with painful crisis or acute chest syndrome and its relation to pulmonary hypertension.

Nephrol Dial Transpl. 2010; 25: 2524-2529View in Article Google ScholarPham P.T. Pham P.C. Wilkinson A.H. Lew S.Q.

Renal abnormalities in sickle cell disease.

Kidney Int. 2000; 57: 1-8View in Article Google ScholarOlaniran K.O. Allegretti A.S. Zhao S.H. Nigwekar S.U. Kalim S.

Acute kidney injury among Black patients with sickle cell trait and sickle cell disease.

Clin J Am Soc Nephrol. 2021; 16: 348-355View in Article Google ScholarCecchini J. Lionnet F. Djibré M. et al.

Outcomes of adult patients with sickle cell disease admitted to the ICU: a case series.

Crit Care Med. 2014; 42: 1629-1639View in Article Google ScholarYawn B.P. Buchanan G.R. Afenyi-Annan A.N. et al.

Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members [published correction appears in JAMA. 2014 Nov 12;312(18):1932] [published correction appears in JAMA. 2015 Feb 17;313(7):729].

JAMA. 2014; 312: 1033-1048View in Article Google ScholarExpert Panel NHLBI

Evidence-based management of sickle cell disease.

https://www.nhlbi.nih.gov/sites/www.nhlbi.nih.gov/files/sickle-cell-disease-report.pdf

Date: 2014

Date accessed: November 23, 2021

View in Article Google ScholarVoskaridou E. Terpos E. Michail S. et al.

Early markers of renal dysfunction in patients with sickle cell/beta-thalassemia.

Kidney Int. 2006; 69: 2037-2042View in Article Google ScholarLaurentino M.R. Parente Filho S.L.A. Parente L.L.C. da Silva Júnior G.B. Daher E.F. Lemes R.P.G.

Non-invasive urinary biomarkers of renal function in sickle cell disease: an overview.

Ann Hematol. 2019; 98: 2653-2660View in Article Google ScholarCastro-Sesquen Y.E. Saraf S.L. Gordeuk V.R. Nekhai S. Jerebtsova M.

Use of Multiple urinary biomarkers for early detection of chronic kidney disease in sickle cell anemia patients.

Blood. 2020; 136: 30View in Article Google ScholarLiem R.I. Lanzkron S. D Coates T. et al.

American Society of Hematology 2019 guidelines for sickle cell disease: cardiopulmonary and kidney disease.

Blood Adv. 2019; 3: 3867-3897View in Article Google ScholarQuinn C.T. Saraf S.L. Gordeuk V.R. et al.

Losartan for the nephropathy of sickle cell anemia: a phase-2, multicenter trial.

Am J Hematol. 2017; 92: E520-E528View in Article Google Scholar

Losartan for sickle cell kidney disease (SCD-Losartan) ClinicalTrials.gov identifier: NCT01989078.

https://clinicaltrials.gov/ct2/show/NCT01989078?term=losartan&cond=Sickle+Cell+Disease&draw=2&rank=2

Date accessed: July 17, 2017

View in Article Google ScholarTelen M.J.

Curative vs targeted therapy for SCD: does it make more sense to address the root cause than target downstream events?.

Blood Adv. 2020; 4: 3457-3465View in Article Google Scholar

A Voxelotor for sickle cell anemia patients at highest risk for progression of chronic kidney disease. ClinicalTrials.gov Identifier: NCT04335721.

https://clinicaltrials.gov/ct2/show/NCT04335721

Date accessed: June 16, 2021

View in Article Google Scholar

Study exploring the effect of Crizanlizumab on kidney function in patients with chronic kidney disease caused by sickle cell disease. ClinicalTrials.gov Identifier: NCT04053764.

https://clinicaltrials.gov/ct2/show/NCT04053764

Date accessed: November 4, 2021

View in Article Google ScholarHoppe C. Neumayr L.

Sickle cell disease: monitoring, Current treatment, and Therapeutics under development.

Hematol Oncol Clin North Am. 2019; 33: 355-371View in Article Google ScholarBoyle S.M. Jacobs B. Sayani F.A.

留言 (0)

沒有登入
gif