S100A4-dependent glycolysis promotes lymphatic vessel sprouting in tumor

Vaahtomeri K, Alitalo K (2020) Lymphatic vessels in tumor dissemination versus immunotherapy. Cancer Res 80(17):3463–3465. https://doi.org/10.1158/0008-5472.can-20-0156

CAS  Article  PubMed  Google Scholar 

Oliver G, Kipnis J, Randolph GJ, Harvey NL (2020) The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell 182(2):270–296. https://doi.org/10.1016/j.cell.2020.06.039

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2(8):573–583. https://doi.org/10.1038/nrc863

CAS  Article  PubMed  Google Scholar 

Karaman S, Detmar M (2014) Mechanisms of lymphatic metastasis. J Clin Invest 124(3):922–928. https://doi.org/10.1172/JCI71606

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dieterich LC, Detmar M (2016) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99:148–160. https://doi.org/10.1016/j.addr.2015.12.011

CAS  Article  PubMed  Google Scholar 

Zheng W, Tammela T, Yamamoto M, Anisimov A, Holopainen T, Kaijalainen S, Karpanen T, Lehti K, Yla-Herttuala S, Alitalo K (2011) Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118(4):1154–1162. https://doi.org/10.1182/blood-2010-11-317800

CAS  Article  PubMed  Google Scholar 

He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, Harding T, Jooss K, Takahashi T, Alitalo K (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65(11):4739–4746. https://doi.org/10.1158/0008-5472.can-04-4576

CAS  Article  PubMed  Google Scholar 

Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivée B, Del Toro R, Suchting S, Medvinsky A, Silva J, Yang J, Thomas JL, Koch AW, Alitalo K, Eichmann A, Bagri A (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188(1):115–130. https://doi.org/10.1083/jcb.200903137

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grimm L, Nakajima H, Chaudhury S, Bower NI, Okuda KS, Cox AG (2019) Yap1 promotes sprouting and proliferation of lymphatic progenitors downstream of Vegfc in the zebrafish trunk. Elife 8:e42881. https://doi.org/10.7554/eLife.42881

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Ulvmar MH (2018) Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nat Commun 9(1):1296. https://doi.org/10.1038/s41467-018-03692-0

CAS  Article  PubMed  PubMed Central  Google Scholar 

Teuwen LA, Geldhof V, Carmeliet P (2019) How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Dev Biol 447(1):90–102. https://doi.org/10.1016/j.ydbio.2017.12.001

CAS  Article  PubMed  Google Scholar 

De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663. https://doi.org/10.1016/j.cell.2013.06.037

CAS  Article  PubMed  Google Scholar 

Yu P, Wu G, Lee HW, Simons M (2018) Endothelial Metabolic Control of Lymphangiogenesis. BioEssays 40(6):e1700245. https://doi.org/10.1002/bies.201700245

Article  PubMed  PubMed Central  Google Scholar 

Lee HW, Yu P, Simons M (2018) Recent advances in understanding lymphangiogenesis and metabolism. F1000Res. https://doi.org/10.12688/f1000research.14803.1

Article  PubMed  PubMed Central  Google Scholar 

Jiang H, Zou Y, Zhao J, Li X, Yang S, Zhou X, Mou D, Zhong W, Cai Y (2021) Pyruvate kinase M2 mediates glycolysis in the lymphatic endothelial cells and promotes the progression of lymphatic malformations. Am J Pathol 191(1):204–215. https://doi.org/10.1016/j.ajpath.2020.10.003

CAS  Article  PubMed  Google Scholar 

Yu P, Wilhelm K, Dubrac A, Tung JK, Alves TC, Fang JS, Xie Y, Zhu J, Chen Z, De Smet F, Zhang J, Jin SW, Sun L, Sun H, Kibbey RG, Hirschi KK, Hay N, Carmeliet P, Chittenden TW, Eichmann A, Potente M, Simons M (2017) FGF-dependent metabolic control of vascular development. Nature 545(7653):224–228. https://doi.org/10.1038/nature22322

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ebralidze A, Tulchinsky E, Grigorian M, Afanasyeva A, Senin V, Revazova E, Lukanidin E (1989) Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family. Genes Dev 3(7):1086–1093. https://doi.org/10.1101/gad.3.7.1086

CAS  Article  PubMed  Google Scholar 

Bresnick AR, Weber DJ, Zimmer DB (2015) S100 proteins in cancer. Nat Rev Cancer 15(2):96–109. https://doi.org/10.1038/nrc3893

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mishra SK, Siddique HR, Saleem M (2012) S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev 31(1–2):163–172. https://doi.org/10.1007/s10555-011-9338-4

CAS  Article  PubMed  Google Scholar 

Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176(2):528–535. https://doi.org/10.2353/ajpath.2010.090526

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schmidt-Hansen B, Ornås D, Grigorian M, Klingelhöfer J, Tulchinsky E, Lukanidin E, Ambartsumian N (2004) Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 23(32):5487–5495. https://doi.org/10.1038/sj.onc.1207720

CAS  Article  PubMed  Google Scholar 

Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, Ambartsumian N (2005) Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res 65(9):3772–3780. https://doi.org/10.1158/0008-5472.can-04-4510

CAS  Article  PubMed  Google Scholar 

Wang YY, Ye ZY, Zhao ZS, Tao HQ, Chu YQ (2010) High-level expression of S100A4 correlates with lymph node metastasis and poor prognosis in patients with gastric cancer. Ann Surg Oncol 17(1):89–97. https://doi.org/10.1245/s10434-009-0722-z

Article  PubMed  Google Scholar 

Wang Y, Ye Z, Zhao Z, Tao H, Chu Y (2009) High-level expression of S100A4 correlates with lymph node metastasis and poor prognosis in patients with gastric cancer. Ann Surg Oncol 17(1):89–97. https://doi.org/10.1245/s10434-009-0722-z

Article  PubMed  Google Scholar 

Min HS, Choe G, Kim SW, Park YJ, Park DJ, Youn YK, Park SH, Cho BY, Park SY (2008) S100A4 expression is associated with lymph node metastasis in papillary microcarcinoma of the thyroid. Mod Pathol 21(6):748–755. https://doi.org/10.1038/modpathol.2008.51

CAS  Article  PubMed  Google Scholar 

Huang LY, Xu Y, Cai GX, Guan ZQ, Sheng WQ, Lu HF, Xie LQ, Lu HJ, Cai SJ (2011) S100A4 over-expression underlies lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol 17(1):69–78. https://doi.org/10.3748/wjg.v17.i1.69

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen L, Li J, Zhang J, Dai C, Liu X, Wang J, Gao Z, Guo H, Wang R, Lu S, Wang F, Zhang H, Chen H, Fan X, Wang S, Qin Z (2015) S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol 62(1):156–164. https://doi.org/10.1016/j.jhep.2014.07.035

CAS  Article  PubMed  Google Scholar 

Liu S, Zhang H, Li Y, Zhang Y, Bian Y, Zeng Y, Yao X, Wan J, Chen X, Li J, Wang Z, Qin Z (2021) S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. J Immunother Cancer. https://doi.org/10.1136/jitc-2021-002548

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Zeng Y, Zhu L, Wan J, Lei N, Yao X, Duan X, Zhang Y, Cheng Y, Tao N, Qin Z (2020) Polysaccharides from Lentinus edodes inhibits lymphangiogenesis via the toll-like receptor 4/JNK pathway of cancer-associated fibroblasts. Front Oncol 10:547683. https://doi.org/10.3389/fonc.2020.547683

Article  PubMed  Google Scholar 

Kong Y, Li Y, Luo Y, Zhu J, Zheng H, Gao B, Guo X, Li Z, Chen R (2020) circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer 19(1):82. https://doi.org/10.1186/s12943-020-01205-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J, Pircher A, Chaturvedi P, Hol J, Thienpont B, Teuwen LA, Schoors S, Boeckx B, Vriens J, Kuchnio A, Veys K, Cruys B, Finotto L, Treps L, Stav-Noraas TE, Bifari F, Stapor P, Decimo I, Kampen K, De Bock K, Haraldsen G, Schoonjans L, Rabelink T, Eelen G, Ghesquière B, Rehman J, Lambrechts D, Malik AB, Dewerchin M, Carmeliet P (2016) Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30(6):968–985. https://doi.org/10.1016/j.ccell.2016.10.006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Conradi LC, Brajic A, Cantelmo AR, Bouché A, Kalucka J, Pircher A, Brüning U, Teuwen LA, Vinckier S, Ghesquière B, Dewerchin M, Carmeliet P (2017) Tumor vessel disintegration by maximum tolerable PFKFB3 blockade. Angiogenesis 20(4):599–613. https://doi.org/10.1007/s10456-017-9573-6

CAS  Article  PubMed 

留言 (0)

沒有登入
gif