Establishing the Pharmacokinetics of Genetic Vaccines is Essential for Maximising their Safety and Efficacy

Remington: The Science and Practice of Pharmacy – 1 Jun. 2005 by David B. Troy (Editor)

WHO Technical Report Series, No. 927, 2005 Annex 1- WHO guidelines on nonclinical evaluation of vaccines https://www.who.int/publications/m/item/annex1-nonclinical.p31-63

Plitnick LM. Global Regulatory Guidelines for Vaccines. Nonclinical Development of Novel Biologics, Biosimilars, Vaccines and Specialty Biologics. 2013;225-241. doi:https://doi.org/10.1016/B978-0-12-394810-6.00009-5

Guideline on Clinical Evaluation of New Vaccines EMEA/CHMP/VWP/164653/2005. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-evaluation-new-vaccines_en.pdf.

Health Canada. Guidance Document Harmonized Requirements for the Licensing of Vaccines and Guidelines for the Preparation of an Application. June 2016. https://www.canada.ca/en/health-canada/services/drugs-health-products/biologics-radiopharmaceuticals-genetic-therapies/applications-submissions/guidance-documents/drug/harmonized-requirements-licensing-vaccines-guidelines-preparation-application.html

US Food and Drug Administration. Considerations for Plasmid DNA Vaccines for Infectious Disease Indications Guidance for Industry. November 2007 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-plasmid-dna-vaccines-infectious-disease-indications

US Food and Drug Administration. Development and Licensure of Vaccines to Prevent COVID-19. Guidance for Industry. June 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-and-licensure-vaccines-prevent-covid-19

Gruber MF, Marshall VB. Regulation and testing of vaccines. Plotkin’s Vaccines. 2018;1547–1565: e2. https://doi.org/10.1016/B978-0-323-35761-6.00079-1.

Article  Google Scholar 

Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021;21(4):195–7. https://doi.org/10.1038/s41577-021-00526-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang, F., Kream, R. M., & Stefano, G. B. (2020). An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Medical science monitor: international medical journal of experimental and clinical research, 26, e924700. https://doi.org/10.12659/MSM.924700

Yaghini E, Tacconi E, Pilling A, Rahman P, Broughton J, Naasani I, Keshtgar M, MacRobert AJ, Della Pasqua O. Population pharmacokinetic modelling of indium-based quantum dot nanoparticles: preclinical in vivo studies. Eur J Pharm Sci. 2021;157: 105639. https://doi.org/10.1016/j.ejps.2020.105639.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Handbook of Nanophysics: Nanomedicine and Nanorobotics. 2011 by Klaus D. Sattler (Editor)

Yuan D, He H, Wu Y, Fan J, Cao Y. Physiologically based pharmacokinetic modeling of nanoparticles. J Pharm Sci. 2019;108(1):58–72. https://doi.org/10.1016/j.xphs.2018.10.037.

CAS  Article  PubMed  Google Scholar 

Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol. 2014;171(17):3963–79. https://doi.org/10.1111/bph.12604.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Petschauer JS, Madden AJ, Kirschbrown WP, Song G, Zamboni WC. The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents. Nanomedicine (Lond). 2015;10(3):447–63. https://doi.org/10.2217/nnm.14.179.

CAS  Article  Google Scholar 

CHEN H, Comparisons of lognormal population means. proceedings of the American Mathematical Society Volume 121, Number 3, July 1994.

Frank SA. The common patterns of nature. J Evol Biol. 2009;22(8):1563–85. https://doi.org/10.1111/j.1420-9101.2009.01775.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shen M, Russek-Cohen E, Slud EV. Checking distributional assumptions for pharmacokinetic summary statistics based on simulations with compartmental models. J Biopharm Stat. 2017;27(5):756–72. https://doi.org/10.1080/10543406.2016.1222535.

Article  PubMed  Google Scholar 

Lacey LF, Keene ON, Pritchard JF, Bye A. Common noncompartmental pharmacokinetic variables: are they normally or log-normally distributed? J Biopharm Stat. 1997;7(1):171–8. https://doi.org/10.1080/10543409708835177.

CAS  Article  PubMed  Google Scholar 

An Introduction to Stochastic Processes in Physics. (2002) By Don S Lemons The Johns Hopkins University Press, p. 34, ISBN 0-8018-6866-1

Randomness And Realism: Encounters With Randomness In The Scientific Search For Physical Reality (2021) By John W Fowler, World Scientific Publishing Company ISBN 9789811243486, 9811243484.

Utembe W, Clewell H, Sanabria N, Doganis P, Gulumian M. Current approaches and techniques in physiologically based pharmacokinetic (PBPK) modelling of nanomaterials. Nanomaterials (Basel, Switzerland). 2020;10(7):1267. https://doi.org/10.3390/nano10071267.

CAS  Article  Google Scholar 

Predicting COVID-19 severity using major risk factors and received vaccines. Ariel Israel, Alejandro A. Schäffer, Eugene Merzon, Ilan Green, Eli Magen, Avivit Golan-Cohen, Shlomo Vinker, Eytan Ruppin. medRxiv 2021.12.31.21268575; doi: https://doi.org/10.1101/2021.12.31.21268575

Crimmins EM. Age-Related Vulnerability to Coronavirus Disease 2019 (COVID-19): Biological, Contextual, and Policy-Related Factors. The Public policy and aging report. 2020;30(4):142–6. https://doi.org/10.1093/ppar/praa023.

Article  PubMed  PubMed Central  Google Scholar 

Bhopal SS, Bhopal R. Sex differential in COVID-19 mortality varies markedly by age. Lancet (London, England). 2020;396(10250):532–3. https://doi.org/10.1016/S0140-6736(20)31748-7.

CAS  Article  Google Scholar 

Li, C., Chen, Y., Zhao, Y., Lung, D. C., Ye, Z., Song, W., Liu, F. F., Cai, J. P., Wong, W. M., Yip, C. C., Chan, J. F., To, K. K., Sridhar, S., Hung, I. F., Chu, H., Kok, K. H., Jin, D. Y., Zhang, A. J., & Yuen, K. Y. (2021). Intravenous injection of COVID-19 mRNA vaccine can induce acute myopericarditis in mouse model. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, ciab707. Advance online publication. https://doi.org/10.1093/cid/ciab707

Thrombocytopenia and splenic platelet directed immune responses after intravenous ChAdOx1 nCov-19 administration. Leo Nicolai, Alexander Leunig, Kami Pekayvaz, Afra Anjum, Eva Riedlinger, Luke Eivers, Marie-Louise Hoffknecht, Dario Rossaro, Raphael Escaig, Rainer Kaiser, Vivien Polewka, Anna Titova, Karsten Spiekermann, Matteo Iannacone, Konstantin Stark, Steffen Massberg. bioRxiv 2021.06.29.450356; https://doi.org/10.1101/2021.06.29.450356

Rzymski P, Fal A (2022) To aspirate or not to aspirate? Considerations for the COVID-19 vaccines. Pharmacological reports: PR, 1–5. Advance online publication. https://doi.org/10.1007/s43440-022-00361-4

Nassar M, Nso N, Gonzalez C, Lakhdar S, Alshamam M, Elshafey M, Abdalazeem Y, Nyein A, Punzalan B, Durrance RJ, Alfishawy M, Bakshi S, Rizzo V. COVID-19 vaccine-induced myocarditis: case report with literature review. Diabetes Metab Syndrome. 2021;15(5): 102205. https://doi.org/10.1016/j.dsx.2021.102205.

Article  Google Scholar 

Das BB, Moskowitz WB, Taylor MB, Palmer A. Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? Children (Basel, Switzerland). 2021;8(7):607. https://doi.org/10.3390/children8070607.

Article  Google Scholar 

Husby A, Hansen JV, Fosbøl E, Thiesson EM, Madsen M, Thomsen RW, Sørensen HT, Andersen M, Wohlfahrt J, Gislason G, Torp-Pedersen C, Køber L, Hviid A. SARS-CoV-2 vaccination and myocarditis or myopericarditis: population based cohort study. BMJ (Clinical research ed). 2021;375: e068665. https://doi.org/10.1136/bmj-2021-068665.

Article  Google Scholar 

Kadkhoda K. Post RNA-based COVID vaccines myocarditis: Proposed mechanisms. Vaccine. 2022;40(3):406–7. https://doi.org/10.1016/j.vaccine.2021.11.093.

CAS  Article  PubMed  Google Scholar 

Frustaci A, Verardo R, Galea N, Lavalle C, Bagnato G, Scialla R, Chimenti C. Hypersensitivity Myocarditis after COVID-19 mRNA Vaccination. J Clin Med. 2022;11(6):1660. https://doi.org/10.3390/jcm11061660.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ogata AF, Cheng CA, Desjardins M, et al. Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clin Infect Dis. 2022;74(4):715–8. https://doi.org/10.1093/cid/ciab465.

CAS  Article  PubMed  Google Scholar 

Bansal, S., Perincheri, S., Fleming, T., Poulson, C., Tiffany, B., Bremner, R. M., & Mohanakumar, T. (2021). Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. Journal of immunology (Baltimore, Md. : 1950), 207(10), 2405–2410. https://doi.org/10.4049/jimmunol.2100637

Rzymski, P., Perek, B., & Flisiak, R. (2021). Thrombotic Thrombocytopenia after COVID-19 Vaccination: In Search of the Underlying Mechanism. Vaccines, 9(6), 559. https://doi.org/10.3390/vaccines9060559

留言 (0)

沒有登入
gif