DNA damage and repair in age-related inflammation

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This article presents a comprehensive summary of the molecular characteristics of the ageing process.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brzostek-Racine, S., Gordon, C., Van Scoy, S. & Reich, N. C. The DNA damage response induces IFN. J. Immunol. 187, 5336–5345 (2011).

CAS  PubMed  Article  Google Scholar 

Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl Acad. Sci. Usa. 110, 2969–2974 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hartlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

PubMed  Article  CAS  Google Scholar 

Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

CAS  PubMed  Article  Google Scholar 

Li, T. & Chen, Z. J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

van Vugt, M. & Parkes, E. E. When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 8, 174–189 (2022).

PubMed  Article  CAS  Google Scholar 

Reislander, T., Groelly, F. J. & Tarsounas, M. DNA damage and cancer immunotherapy: a STING in the tale. Mol. Cell 80, 21–28 (2020).

CAS  PubMed  Article  Google Scholar 

Fenech, M. et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26, 125–132 (2011).

CAS  PubMed  Article  Google Scholar 

Erdal, E., Haider, S., Rehwinkel, J., Harris, A. L. & McHugh, P. J. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev. 31, 353–369 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

CAS  PubMed  Article  Google Scholar 

Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013). This paper for the first time identifies cGAS as a cytosolic DNA sensor.

CAS  PubMed  Article  Google Scholar 

Tanaka, Y. & Chen, Z. J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

PubMed  PubMed Central  Article  Google Scholar 

Abe, T. & Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88, 5328–5341 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Iwanaszko, M. & Kimmel, M. NF-κB and IRF pathways: cross-regulation on target genes promoter level. BMC Genomics 16, 307 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Ho, S. S. et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 44, 1177–1189 (2016).

CAS  PubMed  Article  Google Scholar 

Herzner, A. M. et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16, 1025–1033 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

CAS  PubMed  Article  Google Scholar 

Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015). This paper describes the activation of NF-κB by DNA damage independently of cGAS.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hinz, M. et al. A cytoplasmic ATM–TRAF6–cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol. Cell 40, 63–74 (2010).

CAS  PubMed  Article  Google Scholar 

Fang, L. et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res. 42, 8416–8432 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

d’Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

PubMed  Article  CAS  Google Scholar 

Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol. Cell 71, 745–760.e5 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Niedernhofer, L. J., Bohr, V. A., Sander, M. & Kraemer, K. H. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. Mech. Ageing Dev. 132, 340–347 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Moraes, M. C., Neto, J. B. & Menck, C. F. DNA repair mechanisms protect our genome from carcinogenesis. Front. Biosci. 17, 1362–1388 (2012).

CAS  Article  Google Scholar 

Cleaver, J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656 (1968).

CAS  PubMed  Article  Google Scholar 

Cleaver, J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc. Natl Acad. Sci. Usa. 63, 428–435 (1969).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sijbers, A. M. et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811–822 (1996).

CAS  PubMed  Article  Google Scholar 

Niedernhofer, L. J. et al. The structure-specific endonuclease Ercc1–Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol. Cell. Biol. 24, 5776–5787 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Klein Douwel, D. et al. XPF–ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–471 (2014).

CAS  PubMed  Article  Google Scholar 

Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

CAS  PubMed  Article  Google Scholar 

Karakasilioti, I. et al. DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab. 18, 403–415 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim, D. E. et al. Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell 19, e13072 (2020).

CAS  PubMed  Article  Google Scholar 

Zhao, J. et al. ATM is a key driver of

留言 (0)

沒有登入
gif