Regulation of intestinal immunity by dietary fatty acids

Basson, A. R. et al. Regulation of intestinal inflammation by dietary fats. Front Immunol. 11, 604989 (2020).

CAS  PubMed  Article  Google Scholar 

Siracusa, F., Schaltenberg, N., Villablanca, E. J., Huber, S. & Gagliani, N. Dietary habits and intestinal immunity: from food intake to CD4(+) T H cells. Front Immunol. 9, 3177 (2018).

CAS  PubMed  Article  Google Scholar 

Veldhoen, M. & Brucklacher-Waldert, V. Dietary influences on intestinal immunity. Nat. Rev. Immunol. 12, 696–708 (2012).

CAS  PubMed  Article  Google Scholar 

Cheng, H.M., Mah K.K., Seluakumaran K. Fat digestion: bile salt, emulsification, micelles, lipases, chylomicrons. Defining Physiology: Principles, Themes, Concepts. Springer, Cham, 2020.

Voet, D., Voet, J.G. Lipid metabolism. Biochemistry, 4th Edition, 2010.

Vučić, V., Cvetković, Z. Cholesterol: absorption, function and metabolism. The Encyclopedia of Food and Health, Five Volume Set, 2016.

Abumrad, N. A. et al. Endothelial cell receptors in tissue lipid uptake and metabolism. Circ. Res 128, 433–450 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Linton, M. F., Babaev, V. R., Gleaves, L. A. & Fazio, S. A direct role for the macrophage low density lipoprotein receptor in atherosclerotic lesion formation. J. Biol. Chem. 274, 19204–19210 (1999).

CAS  PubMed  Article  Google Scholar 

Zhu, P., Liu, X., Treml, L. S., Cancro, M. P. & Freedman, B. D. Mechanism and regulatory function of CpG signaling via scavenger receptor B1 in primary B cells. J. Biol. Chem. 284, 22878–22887 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012 (2021). e1005.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity 54, 1561–1577 (2021).

CAS  PubMed  Article  Google Scholar 

Amirache, F. et al. Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood 123, 1422–1424 (2014).

CAS  PubMed  Article  Google Scholar 

Machate, D. J. et al. Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int. J. Mol. Sci. 21, 4093 (2020).

CAS  PubMed Central  Article  Google Scholar 

Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

PubMed  Article  Google Scholar 

Schonfeld, P. & Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J. Lipid Res. 57, 943–954 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zou, J. et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53 (2018).

CAS  PubMed  Article  Google Scholar 

Tuganbaev, T. et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182, 1441–1459 (2020). e1421.

CAS  PubMed  Article  Google Scholar 

Beyaz, S. et al. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell 28, 1922–1935 (2021). e1925.

CAS  PubMed  Article  Google Scholar 

Foley, K. P. et al. Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nat. Commun. 9, 4681 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Silva, R. S. F. et al. Interesterification of lard and soybean oil blends catalyzed by immobilized lipase in a continuous packed bed reactor. J. Am. Oil Chem. Soc. 88, 1925–1933 (2011).

CAS  Article  Google Scholar 

Fernandez, M. L. & West, K. L. Mechanisms by which dietary fatty acids modulate plasma lipids. J. Nutr. 135, 2075–2078 (2005).

CAS  PubMed  Article  Google Scholar 

Zeng, H., Umar, S., Rust, B., Lazarova, D. & Bordonaro, M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int. J. Mol. Sci. 20, 1214 (2019).

CAS  PubMed Central  Article  Google Scholar 

Howard, E. J., Lam, T. K. T. & Duca, F. A. The gut microbiome: connecting diet, glucose homeostasis, and disease. Annu Rev. Med. 73, 469–481 (2022).

PubMed  Article  CAS  Google Scholar 

Al Nabhani, Z. et al. Excess calorie intake early in life increases susceptibility to colitis in adulthood. Nat. Metab. 1, 1101–1109 (2019).

PubMed  Article  Google Scholar 

Garidou, L. et al. The gut microbiota regulates intestinal CD4 T cells expressing RORgammat and controls metabolic disease. Cell Metab. 22, 100–112 (2015).

CAS  PubMed  Article  Google Scholar 

Brandsma, E., Houben, T., Fu, J., Shiri-Sverdlov, R. & Hofker, M. H. The immunity-diet-microbiota axis in the development of metabolic syndrome. Curr. Opin. Lipido. 26, 73–81 (2015).

CAS  Article  Google Scholar 

Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

CAS  PubMed  Article  Google Scholar 

Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

PubMed  Article  CAS  Google Scholar 

Song, X. et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature 577, 410–415 (2020).

CAS  PubMed  Article  Google Scholar 

Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

CAS  PubMed  Article  Google Scholar 

Ma, H., Tao, W. & Zhu, S. T lymphocytes in the intestinal mucosa: defense and tolerance. Cell. Mol. Immunol. 16, 216–224 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Visekruna, A. et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J. Clin. Invest 129, 1972–1983 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Zhu, X. & Zhu, J. CD4 T helper cell subsets and related human immunological disorders. Int. J. Mol. Sci. 21, 8011 (2020).

CAS  PubMed Central  Article  Google Scholar 

Li, P., Spolski, R., Liao, W. & Leonard, W. J. Complex interactions of transcription factors in mediating cytokine biology in T cells. Immunol. Rev. 261, 141–156 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vivier, E. et al. Innate lymphoid. Cells.: 10 Years . Cell 174, 1054–1066 (2018).

CAS  PubMed  Article  Google Scholar 

Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

CAS  PubMed  Article  Google Scholar 

Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Guia, S. & Narni-Mancinelli, E. Helper-like Innate lymphoid cells in humans and mice. Trends Immunol. 41, 436–452 (2020).

CAS  PubMed  Article  Google Scholar 

Spits, H., Bernink, J. H. & Lanier, L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17, 758–764 (2016).

CAS  PubMed  Article  Google Scholar 

Cortez, V. S. & Colonna, M. Diversity and function of group 1 innate lymphoid cells. Immunol. Lett. 179, 19–24 (2016).

CAS 

留言 (0)

沒有登入
gif