Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes

Cho NH, Shawe JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. https://doi.org/10.1016/j.diabres.2018.02.023.

CAS  Article  PubMed  Google Scholar 

Holman N, Young B, Gadsby R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet Med. 2015;32:1119–20. https://doi.org/10.1111/dme.12791.

CAS  Article  PubMed  Google Scholar 

Bruno G, Runzo C, Cavallo-Perin P, Merlletti F, Rivetti M, Pinach S, et al. Incidence of type 1 and type 2 diabetes in adults aged 30-49 years: the population-based registry in the province of Turin, Italy. Diabetes Care. 2005;28:2613–9. https://doi.org/10.2337/diacare.28.11.2613.

Article  PubMed  Google Scholar 

Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27:269–73. https://doi.org/10.5001/omj.2012.68.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Giovannucci E, Harlan DM, Archer MC, Bergenstalet RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60:207–21. https://doi.org/10.3322/caac.20078.

Article  PubMed  Google Scholar 

Shlomai G, Neel B, LeRoith D, Gallagher EJ. Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. J Clin Oncol. 2016;34:4261–9. https://doi.org/10.1200/JCO.2016.67.4044.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK, et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed Pharmacother. 2018;107:306–28. https://doi.org/10.1016/j.biopha.2018.07.157.

CAS  Article  PubMed  Google Scholar 

Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G, et al. Role of adaptive and innate immunity in type 2 diabetes mellitus. J Diabetes Res. 2018;2018:7457269. https://doi.org/10.1155/2018/7457269.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stentz FB, Kitabchi AE. Activated T lymphocytes in Type 2 diabetes: implications from in vitro studies. Curr Drug Targets. 2003;4:493–503. https://doi.org/10.2174/1389450033490966.

CAS  Article  PubMed  Google Scholar 

Dalmas E. Role of innate immune cells in metabolism: from physiology to type 2 diabetes. Semin Immunopathol. 2019;41:531–45. https://doi.org/10.1007/s00281-019-00736-5.

Article  PubMed  Google Scholar 

Xia C, Rao X, Zhong J. Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J Diabetes Res. 2017;2017:6494795. https://doi.org/10.1155/2017/6494795.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gardiner CM. NK cell metabolism. J Leukoc Biol. 2019;105:1235–42. https://doi.org/10.1002/JLB.MR0718-260R.

CAS  Article  PubMed  Google Scholar 

Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017;38:395–406. https://doi.org/10.1016/j.it.2017.03.001.

CAS  Article  PubMed  Google Scholar 

Nam HW, Cho YJ, Lim JA, Kim SJ, Kim H, Sim SY, et al. Functional status of immune cells in patients with long-lasting type 2 diabetes mellitus. Clin Exp Immunol. 2018;194:125–36. https://doi.org/10.1111/cei.13187.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Tian Z. Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol. 2021;18:57–72. https://doi.org/10.1038/s41423-020-00561-z.

CAS  Article  PubMed  Google Scholar 

Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with gammadelta T cells: many paths ahead of us. Cell Mol Immunol. 2020;17:925–39. https://doi.org/10.1038/s41423-020-0504-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Foord E, Arruda LCM, Gaballa A, Klynning C, Uhlin M. Characterization of ascites- and tumor-infiltrating gammadelta T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci Transl Med. 2021;13:eabb0192. https://doi.org/10.1126/scitranslmed.abb0192.

CAS  Article  PubMed  Google Scholar 

Xiang Z, Tu W. Dual face of Vgamma9Vdelta2-T cells in tumor immunology: anti- versus pro-tumoral activities. Front Immunol. 2017;8:1041. https://doi.org/10.3389/fimmu.2017.01041.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hayday AC. gammadelta T cell update: adaptate orchestrators of immune surveillance. J Immunol. 2019;203:311–20. https://doi.org/10.4049/jimmunol.1800934.

CAS  Article  PubMed  Google Scholar 

O’Brien RL, Born WK. gammadelta T cell subsets: a link between TCR and function? Semin Immunol. 2010;22:193–8. https://doi.org/10.1016/j.smim.2010.03.006.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13:88–100. https://doi.org/10.1038/nri3384.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–78. https://doi.org/10.1038/nri2781.

CAS  Article  PubMed  Google Scholar 

Born WK, Reardon CL, O’Brien RL. The function of gammadelta T cells in innate immunity. Curr Opin Immunol. 2006;18:31–38. https://doi.org/10.1016/j.coi.2005.11.007.

CAS  Article  PubMed  Google Scholar 

Zheng J, Liu Y, Lau YL, Tu W. gammadelta-T cells: an unpolished sword in human anti-infection immunity. Cell Mol Immunol. 2013;10:50–57. https://doi.org/10.1038/cmi.2012.43.

CAS  Article  PubMed  Google Scholar 

Zheng J, Wu WL, Liu Y, Xiang Z, Liu M, Chan KH, et al. The therapeutic effect of pamidronate on lethal avian influenza A H7N9 virus infected humanized mice. PLoS One. 2015;10:e0135999. https://doi.org/10.1371/journal.pone.0135999.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li J, Li H, Mao H, Yu M, Feng T, Yang F, et al. Vgamma9Vdelta2-T lymphocytes have impaired antiviral function in small-for-gestational-age and preterm neonates. Cell Mol Immunol. 2013;10:253–60. https://doi.org/10.1038/cmi.2012.78.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pei Y, Xiang Z, Huang C, Wang X, Mu X, Wen L, et al. CD137 costimulation enhances the antiviral activity of Vgamma9Vdelta2-T cells against influenza virus. Signal Transduct Target Ther. 2020;5:74. https://doi.org/10.1038/s41392-020-0174-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He Y, et al. Allogeneic Vgamma9Vdelta2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol. 2021;18:427–39. https://doi.org/10.1038/s41423-020-0515-7.

CAS  Article  PubMed  Google Scholar 

Beetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D, et al. Innate immune functions of human gammadelta T cells. Immunobiology. 2008;213:173–82. https://doi.org/10.1016/j.imbio.2007.10.006.

CAS  Article  PubMed  Google Scholar 

Nielsen MM, Witherden DA, Havran WL. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17:733–45. https://doi.org/10.1038/nri.2017.101.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116:1726–33. https://doi.org/10.1182/blood-2009-07-234211.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen Q, Wen K, Lv A, Liu M, Ni K, Xiang Z, et al. Human Vgamma9Vdelta2-T cells synergize CD4(+) T follicular helper cells to produce influenza virus-specific antibody. Front Immunol. 2018;9:599. https://doi.org/10.3389/fimmu.2018.00599.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Silva-Santos B, Mensurado S, Coffelt SB. gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 2019;19:392–404. https://doi.org/10.1038/s41568-019-0153-5.

CAS  Article  PubMed  Google Scholar 

Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, et al. Targeted activation of human Vgamma9Vdelta2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell. 2014;26:565–76. https://doi.org/10.1016/j.ccr.2014.07.026.

CAS  Article  PubMed  Google Scholar 

Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, et al. Exosomes derived from Vdelta2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med. 2020;12:eaaz3426. https://doi.org/10.1126/scitranslmed.aaz3426.

CAS  Article 

留言 (0)

沒有登入
gif