Relationship between attachment site of tibialis anterior muscle and shape of tibia: anatomical study of cadavers

Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, et al. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res. 1992;10(6):928–34.

CAS  Article  Google Scholar 

Miller SC, Korff T, Waugh C, Fath F, Blazevich AJ. Tibialis anterior moment arm: effects of measurement errors and assumptions. Med Sci Sports Exerc. 2015;47(2):428–39.

Article  Google Scholar 

Basmajian JV, Stecko G. The role of muscles in arch support of the foot. J Bone Joint Surg Am. 1963;45:1184–90.

CAS  Article  Google Scholar 

Bartlett JL, Kram R. Changing the demand on specific muscle groups affects the walk-run transition speed. J Exp Biol. 2008;211:1281–8.

Article  Google Scholar 

Byrne CA, O’Keeffe DT, Donnelly AE, Lyons GM. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction. J Electromyogr Kinesiol. 2007;17(5):605–16.

CAS  Article  Google Scholar 

Hreljac A, Imamura RT, Escamilla RF, Edwards WB, MacLeod T. The relationship between joint kinetic factors and the walk-run gait transition speed during human locomotion. J Appl Biomech. 2008;24(2):149–57.

Article  Google Scholar 

Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and running. J Neurophysiol. 2006;95(6):3426–37.

CAS  Article  Google Scholar 

Wolf SL, Kim JH. Morphological analysis of the human tibialis anterior and medial gastrocnemius muscles. Acta Anat. 1997;158(4):287–95.

CAS  Article  Google Scholar 

Fennell CW, Phillips P 3rd. Redefining the anatomy of the anterior tibialis tendon. Foot Ankle Int. 1994;15(7):396–9.

CAS  Article  Google Scholar 

Olewnik Ł, Podgórski M, Polguj M, Topol M. A cadaveric and sonographic study of the morphology of the tibialis anterior tendon - a proposal for a new classification. J Foot Ankle Res. 2019;12:9.

Article  Google Scholar 

Willegger M, Seyidova N, Schuh R, Windhager R, Hirtler L. Anatomical Footprint of the Tibialis Anterior Tendon: Surgical Implications for Foot and Ankle Reconstructions. Biomed Res Int. 2017;2017:9542125.

Article  Google Scholar 

Gilroy AM, MacPherson BR, Schünke M, Schulte E, Schumacher U, Voll M, et al. Atlas of anatomy. New York: Thieme; 2016.

Book  Google Scholar 

Netter FH. Atlas of human anatomy. Philadelphia: Elsevier; 2018.

Google Scholar 

Gray HSS, Anand N. Gray’s Anatomy: the anatomical basis of clinical practice. London: Elsevier; 2016.

Google Scholar 

Ko SU, Tolea MI, Hausdorff JM, Ferrucci L. Sex-specific differences in gait patterns of healthy older adults: results from the Baltimore Longitudinal Study of Aging. J Biomech. 2011;44(10):1974–9.

Article  Google Scholar 

Kerrigan DC, Todd MK, Della CU. Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil. 1998;77(1):2–7.

CAS  Article  Google Scholar 

Bruening DA, Frimenko RE, Goodyear CD, Bowden DR, Fullenkamp AM. Sex differences in whole body gait kinematics at preferred speeds. Gait Posture. 2015;41(2):540–5.

Article  Google Scholar 

Tesch NP, Grechenig W, Heidari N, Pichler W, Grechenig S, Weinberg AM. Morphology of the tibialis anterior muscle and its implications in minimally invasive plate osteosynthesis of tibial fractures. Orthopedics. 2010;33(3).

Manal K, Roberts DP, Buchanan TS. Optimal pennation angle of the primary ankle plantar and dorsiflexors: variations with sex, contraction intensity, and limb. J Appl Biomech. 2006;22(4):255–63.

Article  Google Scholar 

Lieber RL. Skeletal muscle structure and function. Implications for rehabilitation and sports medicine. Baltimore: Williams & Wilkins; 1992.

George CA, Hutchinson MR. Chronic exertional compartment syndrome. Clin Sports Med. 2012;31(2):307–19.

Article  Google Scholar 

de Bruijn JA, van Zantvoort APM, van Klaveren D, Winkes MB, van der Cruijsen-Raaijmakers M, Hoogeveen AR, et al. Factors predicting lower leg chronic exertional compartment syndrome in a large population. Int J Sports Med. 2018;39(1):58–66.

Article  Google Scholar 

Davis DE, Raikin S, Garras DN, Vitanzo P, Labrador H, Espandar R. Characteristics of patients with chronic exertional compartment syndrome. Foot Ankle Int. 2013;34(10):1349–54.

Article  Google Scholar 

de Fijter WM, Scheltinga MR, Luiting MG. Minimally invasive fasciotomy in chronic exertional compartment syndrome and fascial hernias of the anterior lower leg: short- and long-term results. Mil Med. 2006;171(5):399–403.

Article  Google Scholar 

Detmer DE, Sharpe K, Sufit RL, Girdley FM. Chronic compartment syndrome: diagnosis, management, and outcomes. Am J Sports Med. 1985;13(3):162–70.

CAS  Article  Google Scholar 

Pedowitz RA, Hargens AR, Mubarak SJ, Gershuni DH. Modified criteria for the objective diagnosis of chronic compartment syndrome of the leg. Am J Sports Med. 1990;18(1):35–40.

CAS  Article  Google Scholar 

Qvarfordt P, Christenson JT, Eklöf B, Ohlin P, Saltin B. Intramuscular pressure, muscle blood flow, and skeletal muscle metabolism in chronic anterior tibial compartment syndrome. Clin Orthop Relat Res. 1983;179:284–90.

Article  Google Scholar 

Waterman BR, Liu J, Newcomb R, Schoenfeld AJ, Orr JD, Belmont PJ Jr. Risk factors for chronic exertional compartment syndrome in a physically active military population. Am J Sports Med. 2013;41(11):2545–9.

Article  Google Scholar 

Moen MH, Tol JL, Weir A, Steunebrink M, De Winter TC. Medial tibial stress syndrome: a critical review. Sports medicine (Auckland, NZ). 2009;39(7):523–46.

Article  Google Scholar 

Beck BR, Osternig LR. Medial tibial stress syndrome. The location of muscles in the leg in relation to symptoms. The Journal of bone and joint surgery American volume. 1994;76(7):1057–61.

Yates B, White S. The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am J Sports Med. 2004;32(3):772–80.

Article  Google Scholar 

Bennett JE, Reinking MF, Pluemer B, Pentel A, Seaton M, Killian C. Factors contributing to the development of medial tibial stress syndrome in high school runners. J Orthop Sports Phys Ther. 2001;31(9):504–10.

CAS  Article  Google Scholar 

Plisky MS, Rauh MJ, Heiderscheit B, Underwood FB, Tank RT. Medial tibial stress syndrome in high school cross-country runners: incidence and risk factors. J Orthop Sports Phys Ther. 2007;37(2):40–7.

Article  Google Scholar 

Edama M, Onishi H, Kubo M, Takabayashi T, Yokoyama E, Inai T, et al. Gender differences of muscle and crural fascia origins in relation to the occurrence of medial tibial stress syndrome. Scand J Med Sci Sports. 2017;27(2):203–8.

CAS  Article  Google Scholar 

Kristiansen LP, Gunderson RB, Steen H, Reikerås O. The normal development of tibial torsion. Skeletal Radiol. 2001;30(9):519–22.

CAS  Article  Google Scholar 

Yoshioka Y, Siu DW, Scudamore RA, Cooke TD. Tibial anatomy and functional axes. J Orthop Res. 1989;7(1):132–7.

CAS  Article  Google Scholar 

Eckhoff DG, Kramer RC, Watkins JJ, Burke BJ, Alongi CA, Stamm ER, et al. Variation in tibial torsion. Clin Anat. 1994;7(2):76–9.

Article  Google Scholar 

Lee SS, Piazza SJ. Inversion-eversion moment arms of gastrocnemius and tibialis anterior measured in vivo. J Biomech. 2008;41(16):3366–70.

Article  Google Scholar 

Wang R, Gutierrez-Farewik EM. The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait. Gait Posture. 2011;34(1):29–35.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif