Effects of Glucagon-Like Peptide-1 Receptor Agonist (GLP-1RA) on Cardiac Structure and Function: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials

F. Marsico et al., "Effects of glucagon-like peptide-1 receptor agonists on major cardiovascular events in patients with Type 2 diabetes mellitus with or without established cardiovascular disease: a meta-analysis of randomized controlled trials," Eur Heart J, vol. 41, no. 35, pp. 3346-3358, 2020, doi: .

Hinnen D. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectr. 2017;30(3):202–10.

PubMed  PubMed Central  Google Scholar 

Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016;18(4):317–32.

CAS  PubMed  Google Scholar 

Gejl M, et al. Influence of GLP-1 on myocardial glucose metabolism in healthy men during normo- or hypoglycemia. PLoS One. 2014;9(1):e83758.

PubMed  PubMed Central  Google Scholar 

Li R, Shan Y, Gao L, Wang X, Wang X, Wang F. The Glp-1 Analog Liraglutide Protects Against Angiotensin II and Pressure Overload-Induced Cardiac Hypertrophy via PI3K/Akt1 and AMPKa Signaling. Front Pharmacol. 2019;10:537.

PubMed  PubMed Central  Google Scholar 

Wang D, Jiang L, Feng B, He N, Zhang Y, Ye H. Protective effects of glucagon-like peptide-1 on cardiac remodeling by inhibiting oxidative stress through mammalian target of rapamycin complex 1/p70 ribosomal protein S6 kinase pathway in diabetes mellitus. J Diabetes Investig. 2020;11(1):39–51.

CAS  PubMed  Google Scholar 

Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation. 2017;136(9):849–70.

CAS  PubMed  Google Scholar 

Petersen SE, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017;19(1):18.

PubMed  PubMed Central  Google Scholar 

Solomon SD, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112(24):3738–44.

PubMed  Google Scholar 

Wu E, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94(6):730–6.

CAS  PubMed  Google Scholar 

Hillis GS, et al. Noninvasive estimation of left ventricular filling pressure by E/e' is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol. 2004;43(3):360–7.

PubMed  Google Scholar 

Chang SA, et al. Noninvasive estimate of left ventricular filling pressure correlated with early and midterm postoperative cardiovascular events after isolated aortic valve replacement in patients with severe aortic stenosis. J Thorac Cardiovasc Surg. 2010;140(6):1361–6.

PubMed  Google Scholar 

Natali A, Nesti L, Trico D, Ferrannini E. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol. 2021;20(1):196.

CAS  PubMed  PubMed Central  Google Scholar 

A. Liberati et al., "The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration," J Clin Epidemiol, vol. 62, no. 10, pp. e1-34, Oct 2009, doi: .

S. F. Nagueh et al., "Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging," Eur Heart J Cardiovasc Imaging, vol. 17, no. 12, pp. 1321-1360, Dec 2016, doi: .

Sterne JAC, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

PubMed  Google Scholar 

Review Manager (RevMan). 2020.

Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, 2019.

Wagner AM, et al. Effect of liraglutide on physical performance in type 2 diabetes: Results of a randomized, double-blind, controlled trial (LIPER2). Diabetes Metab. 2019;45(3):268–75.

CAS  PubMed  Google Scholar 

Jorsal A, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19(1):69–77.

CAS  PubMed  Google Scholar 

R. Nielsen et al., "The impact of the glucagon-like peptide-1 receptor agonist liraglutide on natriuretic peptides in heart failure patients with reduced ejection fraction with and without type 2 diabetes," Diabetes Obes Metab, vol. 22, no. 11, pp. 2141-2150, Nov 2020, doi: .

Margulies KB, et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2016;316(5):500–8.

CAS  PubMed  PubMed Central  Google Scholar 

Kumarathurai P, Sajadieh A, Anholm C, Kristiansen OP, Haugaard SB, Nielsen OW. Effects of liraglutide on diastolic function parameters in patients with type 2 diabetes and coronary artery disease: a randomized crossover study. Cardiovasc Diabetol. 2021;20(1):12.

CAS  PubMed  PubMed Central  Google Scholar 

Kumarathurai P, et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study. Cardiovasc Diabetol. 2016;15(1):105.

PubMed  PubMed Central  Google Scholar 

Chen WR, et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine. 2016;52(3):516–26.

CAS  PubMed  Google Scholar 

Chen WR, et al. Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J. 2015;170(5):845–54.

CAS  PubMed  Google Scholar 

Chen WR, et al. Effects of Liraglutide on Reperfusion Injury in Patients With ST-Segment-Elevation Myocardial Infarction. Circ Cardiovasc Imaging. 2016;9(12). https://doi.org/10.1161/CIRCIMAGING.116.005146.

Lepore JJ, et al. Effects of the Novel Long-Acting GLP-1 Agonist, Albiglutide, on Cardiac Function, Cardiac Metabolism, and Exercise Capacity in Patients With Chronic Heart Failure and Reduced Ejection Fraction. JACC Heart Fail. 2016;4(7):559–66.

PubMed  Google Scholar 

Lonborg J, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–9.

CAS  PubMed  Google Scholar 

Zhang JY, Wang XY, Wang X. Effects of liraglutide on hemodynamic parameters in patients with heart failure. Oncotarget. 2017;8(37):62693–702.

PubMed  PubMed Central  Google Scholar 

Roos ST, et al. No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. Int J Cardiol. 2016;220:809–14.

PubMed  Google Scholar 

Woo JS, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol. 2013;33(9):2252–60.

CAS  PubMed  Google Scholar 

Garcia Del Blanco B, et al. Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the Myocardial Infarct size: a two-by-two factorial randomized trial (COMBAT-MI). Basic Res Cardiol. 2021;116(1):4.

CAS  PubMed  Google Scholar 

Jorgensen PG, et al. Effect of exercise combined with glucagon-like peptide-1 receptor agonist treatment on cardiac function: A randomized double-blind placebo-controlled clinical trial. Diabetes Obes Metab. 2017;19(7):1040–4.

CAS  PubMed  Google Scholar 

Bizino MB, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol. 2019;18(1):55.

PubMed  PubMed Central  Google Scholar 

Paiman EHM, et al. Effect of Liraglutide on Cardiovascular Function and Myocardial Tissue Characteristics in Type 2 Diabetes Patients of South Asian Descent Living in the Netherlands: A Double-Blind, Randomized, Placebo-Controlled Trial. J Magn Reson Imaging. 2020;51(6):1679–88.

PubMed  Google Scholar 

Scalzo RL, et al. Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes. J Diabetes Complicat. 2017;31(2):449–55.

Google Scholar 

Ikonomidis I, et al. Effects of Glucagon-Like Peptide-1 Receptor Agonists, Sodium-Glucose Cotransporter-2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients With Type 2 Diabetes Mellitus After 12-Month Treatment. J Am Heart Assoc. 2020;9(9):e015716.

CAS  PubMed  PubMed Central  Google Scholar 

R. M. Lang et al., "EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography," Eur Heart J Cardiovasc Imaging, vol. 13, no. 1, pp. 1-46, Jan 2012, doi: .

Lang RM, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39 e14.

PubMed  Google Scholar 

Lang RM, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.

PubMed  Google Scholar 

Ibanez B, et al. Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;74(2):238–56.

PubMed  PubMed Central  Google Scholar 

Bogdanovic J, et al. Impact of acute hyperglycemia on layer-specific left ventricular strain in asymptomatic diabetic patients: an analysis based on two-dimensional speckle tracking echocardiography. Cardiovasc Diabetol. 2019;18(1):68.

PubMed  PubMed Central  Google Scholar 

Cioffi G, et al. Combined circumferential and longitudinal left ventricular systolic dysfunction in patients with type 2 diabetes mellitus without myocardial ischemia. Exp Clin Cardiol. 2013;18(1):e26–31 [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/24294044.

PubMed  PubMed Central  Google Scholar 

von Bibra H, Sutton MSJ. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia. 2010;53(6):1033–45.

Google Scholar 

Oktay AA et al. Diabetes, Cardiomyopathy, and Heart Failure, in Endotext, K. R. Feingold et al. Eds. South Dartmouth (MA), 2000.

Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation. 1995;92(3):334–41.

CAS  PubMed  Google Scholar 

Pride YB, et al. Relation between infarct size in ST-segment elevation myocardial infarction treated successfully by percutaneous coronary intervention and left ventricular ejection fraction three months after the infarct. Am J Cardiol. 2010;106(5):635–40.

PubMed  Google Scholar 

Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54(1):146–51.

CAS  PubMed  Google Scholar 

Timmers L, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53(6):501–10.

CAS  PubMed  Google Scholar 

Zhao T, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317(3):1106–13.

留言 (0)

沒有登入
gif