Heme oxygenase-1 protects against endotoxin-induced acute lung injury depends on NAD+-mediated mitonuclear communication through PGC1α/PPARγ signaling pathway

van der Poll T, et al. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–20. https://doi.org/10.1038/nri.2017.36.

CAS  Article  PubMed  Google Scholar 

Fowler AA 3rd, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019;322:1261–70. https://doi.org/10.1001/jama.2019.11825.

Article  PubMed  PubMed Central  Google Scholar 

Bellani G, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. https://doi.org/10.1001/jama.2016.0291.

CAS  Article  PubMed  Google Scholar 

Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–70. https://doi.org/10.1038/s41577-020-0308-3.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:497–506. https://doi.org/10.1016/s0140-6736(20)30183-5.

CAS  Article  Google Scholar 

Arulkumaran N, et al. Mitochondrial function in sepsis. Shock. 2016;45:271–81. https://doi.org/10.1097/shk.0000000000000463.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yu J, et al. Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology. 2016;125:1190–201. https://doi.org/10.1097/aln.0000000000001333.

CAS  Article  PubMed  Google Scholar 

Fredriksson K, et al. Mitochondrial function in sepsis: respiratory versus leg muscle. Crit Care Med. 2007;35:S449-453. https://doi.org/10.1097/01.Ccm.0000278048.00896.4b.

Article  PubMed  Google Scholar 

D’Amico D, et al. Cytosolic proteostasis networks of the mitochondrial stress response. Trends Biochem Sci. 2017;42:712–25. https://doi.org/10.1016/j.tibs.2017.05.002.

CAS  Article  PubMed  Google Scholar 

Mottis A, et al. Mitocellular communication: Shaping health and disease. Science (New York, NY). 2019;366:827–32. https://doi.org/10.1126/science.aax3768.

CAS  Article  Google Scholar 

Quirós PM, et al. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol. 2016;17:213–26. https://doi.org/10.1038/nrm.2016.23.

CAS  Article  PubMed  Google Scholar 

Pellegrino MW, et al. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature. 2014;516:414–7. https://doi.org/10.1038/nature13818.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu M, et al. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc Res. 2019;115:530–45. https://doi.org/10.1093/cvr/cvy217.

CAS  Article  PubMed  Google Scholar 

Zhou H, et al. Loss of high-temperature requirement protein A2 protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. IUBMB Life. 2020;72:1659–79. https://doi.org/10.1002/iub.2289.

CAS  Article  PubMed  Google Scholar 

Melber A, et al. UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 2018;28:281–95. https://doi.org/10.1038/cr.2018.16.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Houtkooper RH, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497:451–7. https://doi.org/10.1038/nature12188.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Haynes CM, et al. The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci. 2010;123:3849–55. https://doi.org/10.1242/jcs.075119.

CAS  Article  PubMed  Google Scholar 

Moullan N, et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 2015;10:1681–91. https://doi.org/10.1016/j.celrep.2015.02.034.

CAS  Article  PubMed  PubMed Central  Google Scholar 

English J, et al. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res. 2020;161: 105161. https://doi.org/10.1016/j.phrs.2020.105161.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lv H, et al. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways. Int J Biol Sci. 2016;12:72–86. https://doi.org/10.7150/ijbs.13188.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shi J, et al. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest. 2019;99:1795–809. https://doi.org/10.1038/s41374-019-0286-x.

CAS  Article  PubMed  Google Scholar 

Zhang L, et al. Isoflavone ME-344 disrupts redox homeostasis and mitochondrial function by targeting heme oxygenase 1. Cancer Res. 2019;79:4072–85. https://doi.org/10.1158/0008-5472.Can-18-3503.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shi J, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol. 2021;41: 101954. https://doi.org/10.1016/j.redox.2021.101954.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shi J, et al. Hydromorphone protects against CO(2) pneumoperitoneum-induced lung injury via heme oxygenase-1-regulated mitochondrial dynamics. Oxid Med Cell Longev. 2021;2021:9034376. https://doi.org/10.1155/2021/9034376.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li X, et al. Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway. Free Radical Biol Med. 2021;165:243–53. https://doi.org/10.1016/j.freeradbiomed.2021.01.028.

CAS  Article  Google Scholar 

Bi XG, et al. Helix B surface peptide protects against acute lung injury through reducing oxidative stress and endoplasmic reticulum stress via activation of Nrf2/HO-1 signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24:6919–30. https://doi.org/10.26355/eurrev_202006_21683.

Article  PubMed  Google Scholar 

Nikiforov A, et al. The human NAD metabolome: functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol. 2015;50:284–97. https://doi.org/10.3109/10409238.2015.1028612.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang DX, et al. The potential regulatory roles of NAD(+) and its metabolism in autophagy. Metabolism. 2016;65:454–62. https://doi.org/10.1016/j.metabol.2015.11.010.

CAS  Article  PubMed  Google Scholar 

Cambronne XA, et al. Biosensor reveals multiple sources for mitochondrial NAD+. Science (New York, NY). 2016;352:1474–7. https://doi.org/10.1126/science.aad5168.

CAS  Article  Google Scholar 

Hong G, et al. Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis. Free Radical Biol Med. 2018;123:125–37. https://doi.org/10.1016/j.freeradbiomed.2018.05.073.

CAS  Article  Google Scholar 

Tran MT, et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531:528–32. https://doi.org/10.1038/nature17184.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee CF, et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation. 2016;134:883–94. https://doi.org/10.1161/circulationaha.116.022495.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wegiel B, et al. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal. 2014;20:1709–22. https://doi.org/10.1089/ars.2013.5667.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Vettorazzi S, et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun. 2015;6:7796. https://doi.org/10.1038/ncomms8796.

CAS  Article  PubMed  Google Scholar 

Ye Z, et al. LncRNA-LET inhibits cell growth of clear cell renal cell carcinoma by regulating miR-373-3p. Cancer Cell Int. 2019;19:311. https://doi.org/10.1186/s12935-019-1008-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Le Ribeuz H, et al. Proteomic analysis of KCNK3 loss of expression identified dysregulated pathways in pulmonary vascular cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21197400.

Article  PubMed  PubMed Central  Google Scholar 

Imai SI, et al. It takes two to tango: NAD(+) and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2016;2:16017. https://doi.org/10.1038/npjamd.2016.17.

留言 (0)

沒有登入
gif