Diabetes Out-of-the-Box: Diabetes Mellitus and Impairment in Hearing and Vision

Hattersley AT, Greeley SAW, Polak M, et al. ISPAD clinical practice consensus guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19:47–63.

PubMed  Article  Google Scholar 

D B, A VR, B G, et al. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45:S17–38.

Article  Google Scholar 

Shi D, Motamed M, Mejía-Benítez A, Li L, Lin E, Budhram D, Kaur Y, Meyre D Genetic syndromes with diabetes: a systematic review. Obes Rev. (2021) https://doi.org/10.1111/OBR.13303

Yang Y, Chan L. Monogenic diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev. 2016;37:190–222.

PubMed  PubMed Central  Article  CAS  Google Scholar 

• Pallotta MT, Tascini G, Crispoldi R, Orabona C, Mondanelli G, Grohmann U, Esposito S  Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives. J Transl Med. (2019) https://doi.org/10.1186/s12967-019-1993-1An excellent review of Wolfram syndrome, including the etiology, pathogenesis, and future therapeutic interventions.

Zhang H, Colclough K, Gloyn AL, Pollin TI Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest. (2021) https://doi.org/10.1172/JCI142244

Bonnycastle LL, Chines PS, Hara T, et al. Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes. 2013;62:3943–50.

CAS  PubMed  PubMed Central  Article  Google Scholar 

De Franco E, Flanagan SE, Yagi T, et al. Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes. 2017;66:2044–53.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Delvecchio M, Iacoviello M, Pantaleo A, Resta N Clinical spectrum associated with Wolfram syndrome type 1 and type 2: a review on genotype-phenotype correlations. Int J Environ Res Public Health. (2021) https://doi.org/10.3390/IJERPH18094796

El-Shanti H, Lidral AC, Jarrah N, Druhan L, Ajlouni K. Homozygosity mapping identifies an additional locus for Wolfram syndrome on chromosome 4q. Am J Hum Genet. 2000;66:1229–36.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rigoli L, Di Bella C. Wolfram syndrome 1 and Wolfram syndrome 2. Curr Opin Pediatr. 2012;24:512–7.

CAS  PubMed  Article  Google Scholar 

Amr S, Heisey C, Zhang M, Xia XJ, Shows KH, Ajlouni K, Pandya A, Satin LS, El-Shanti H, Shiang R. A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet. 2007;81:673–83.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Harding HP, Ron D Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes. (2002) https://doi.org/10.2337/DIABETES.51.2007.S455

Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7:1153–63.

CAS  PubMed  Article  Google Scholar 

Fonseca SG, Ishigaki S, Oslowski CM, et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest. 2010;120:744–55.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yamada T, Ishihara H, Tamura A, et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet. 2006;15:1600–9.

CAS  PubMed  Article  Google Scholar 

Chen YF, Kao CH, Chen YT, et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 2009;23:1183–94.

CAS  PubMed  PubMed Central  Article  Google Scholar 

•• Abreu D, Urano F. Current landscape of treatments for Wolfram syndrome. Trends Pharmacol Sci. 2019;40:711–4. (This study emphasizes the treatment targeted at the endoplasmic reticulum stress pathogenesis of Wolfram syndrome.)

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lombardo F, Salzano G, Di Bella C, Aversa T, Pugliatti F, Cara S, Valenzise M, De Luca F, Rigoli L. Phenotypical and genotypical expression of Wolfram syndrome in 12 patients from a Sicilian district where this syndrome might not be so infrequent as generally expected. J Endocrinol Invest. 2014;37:195–202.

CAS  PubMed  Article  Google Scholar 

Medlej R, Wasson J, Baz P, Azar S, Salti I, Loiselet J, Permutt A, Halaby G. Diabetes mellitus and optic atrophy: a study of Wolfram syndrome in the Lebanese population. J Clin Endocrinol Metab. 2004;89:1656–61.

CAS  PubMed  Article  Google Scholar 

Pallotta MT, Tascini G, Crispoldi R, Orabona C, Mondanelli G, Grohmann U, Esposito S. Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives. J Transl Med. 2019;17:238.

PubMed  PubMed Central  Article  Google Scholar 

Al-Till M, Jarrah NS, Ajlouni KM. Ophthalmologic findings in fifteen patients with Wolfram syndrome. Eur J Ophthalmol. 2002;12:84–8.

CAS  PubMed  Article  Google Scholar 

Rotsos T, Papakonstantinou E, Symeonidis C, Krassas A, Kamakari S. Wolfram syndrome: a case report of two sisters Wolfram syndrome: case report of two sisters. Am J Ophthalmol case reports. 2022;26:101452.

Article  Google Scholar 

Soares A, Mota Á, Fonseca S, Faria O, Brandaõ E, Falcaõ Dos Reis F, Gentil R, Guimarães S, Mendonca L. Ophthalmologic manifestations of Wolfram syndrome: report of 14 cases. Ophthalmologica. 2019;241:116–9.

CAS  PubMed  Article  Google Scholar 

Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet (London, England). 1995;346:1458–63.

CAS  Article  Google Scholar 

Kinsley BT, Swift M, Dumont RH, Swift RG. Morbidity and mortality in the Wolfram syndrome. Diabetes Care. 1995;18:1566–70.

CAS  PubMed  Article  Google Scholar 

Rigoli L, Bramanti P, Di Bella C, De Luca F. Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res. 2018;83:921–9.

CAS  PubMed  Article  Google Scholar 

Kondo M, Tanabe K, Amo-Shiinoki K, Hatanaka M, Morii T, Takahashi H, Seino S, Yamada Y, Tanizawa Y. Activation of GLP-1 receptor signalling alleviates cellular stresses and improves beta cell function in a mouse model of Wolfram syndrome. Diabetologia. 2018;61:2189–201.

CAS  PubMed  Article  Google Scholar 

• Jagomäe T, Seppa K, Reimets R, et al  Early intervention and lifelong treatment with GLP1 receptor agonist liraglutide in a Wolfram syndrome rat model with an emphasis on visual neurodegeneration, sensorineural hearing loss and diabetic phenotype. Cells. (2021) https://doi.org/10.3390/CELLS10113193An animal model study that shows promise to patients with Wolfram syndrome, in regard to the visual, hearing, and diabetes aspects of the disease.

Seppa K, Toots M, Reimets R, et al GLP-1 receptor agonist liraglutide has a neuroprotective effect on an aged rat model of Wolfram syndrome. Sci Rep. (2019) https://doi.org/10.1038/S41598-019-52295-2

Kakiuchi C, Ishigaki S, Oslowski CM, Fonseca SG, Kato T, Urano F Valproate, a mood stabilizer, induces WFS1 expression and modulates its interaction with ER stress protein GRP94. PLoS One. (2009) https://doi.org/10.1371/JOURNAL.PONE.0004134

Lu S, Kanekura K, Hara T, et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci U S A. 2014;111:E5292–301.

CAS  PubMed  PubMed Central  Google Scholar 

Nguyen LD, Fischer TT, Abreu D, Arroyo A, Urano F, Ehrlich BE. Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome. Proc Natl Acad Sci U S A. 2020;117:17389–98.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Washington University School of Medicine NI of H (NIH), (NIDDK) NI of D and D and KD A clinical trial of dantrolene sodium in pediatric and adult patients with Wolfram syndrome. https://clinicaltrials.gov/ct2/show/NCT02829268.

Shang L, Hua H, Foo K, et al. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes. 2014;63:923–33.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Iafusco D, Zanfardino A, Piscopo A, et al. Metabolic treatment of Wolfram syndrome. Int J Environ Res Publ Health. 2022;19:2755.

Article  Google Scholar 

Khambatta S, Nguyen DL, Beckman TJ, Wittich CM. Kearns-Sayre syndrome: a case series of 35 adults and children. Int J Gen Med. 2014;7:325–32.

PubMed  PubMed Central  Google Scholar 

Björkman K, Vissing J, Østergaard E, et al Phenotypic spectrum and clinical course of single large-scale mitochondrial DNA deletion disease in the paediatric population: a multicentre study. J Med Genet jmedgenet-2021–108006 (2021)

Broomfield A, Sweeney MG, Woodward CE, et al. Paediatric single mitochondrial DNA deletion disorders: an overlapping spectrum of disease. J Inherit Metab Dis. 2015;38:445–57.

CAS  PubMed  Article  Google Scholar 

•• Sequiera GL, Srivastava A, Alagarsamy KN, Rockman-Greenberg C, Dhingra S Generation and evaluation of isogenic iPSC as a source of cell replacement therapies in patients with Kearns Sayre syndrome. Cells (2021) 10:1–15 This important study demonstrated for the first time that peripheral blood mononuclear cell-induced pluripotent stem cells that represented an isogenic source of patient-specific personalized cell replacement therapies in Kearns–Sayre syndrome.

Sabella-Jiménez V, Otero-Herrera C, Silvera-Redondo C, Garavito-Galofre P Mitochondrial DNA deletion and duplication in Kearns-Sayre syndrome (KSS) with initial presentation as Pearson Marrow-Pancreas syndrome (PMPS): two case reports in Barranquilla, Colombia. Mol Genet genomic Med. (2020) https://doi.org/10.1002/MGG3.1509

Bhatnagar K, Gupta D. Kearns Sayre syndrome. Med J Dr DY Patil Univ. 2022;7:252–5.

Article  Google Scholar 

Yamashita S, Nishino I, Nonaka I, Goto YI. Genotype and phenotype analyses in 136 patients with single large-scale mitochondrial DNA deletions. J Hum Genet. 2008;53:598–606.

CAS  PubMed  Article  Google Scholar 

Epstein AE, Dimarco JP, Ellenbogen KA, et al ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation. (2008) https://doi.org/10.1161/CIRCUALTIONAHA.108.189742

Trivedi M, Goldstein A, Arora G. Prophylactic pacemaker placement at first signs of conduction disease in Kearns-Sayre syndrome. Cardiol Young. 2018;28:1487–8.

PubMed  Article  Google Scholar 

•• Jacoby E, Ben Yakir-Blumkin M, Blumenfeld-Kan S, et al. Mitochondrial augmentation of CD34 + cells from healthy donors and patients with mitochondrial DNA disorders confers functional benefit. NPJ Regen Med. 2021. https://doi.org/10.1038/S41536-021-00167-71093. (This revolutionary study supports mitochondria augmentation technology as a potential disease-modifying therapy for mtDNA disorders.)

Article  PubMed  PubMed Central  Google Scholar 

•• Zhang S, Qiao Y, Wang Z, Zhuang J, Sun Y, Shang X, Li G Identification of novel compound heterozygous variants in SLC19A2 and the genotype-phenotype associations in thiamine-responsive megaloblastic anemia. Clin Chim Acta (2021) 516:157–168 This review summarizes the genotypes and phenotypes of most of the families described in the literature with thiamine-responsive megaloblastic anemia.

• Jungtrakoon P, Shirakawa J, Buranasupkajorn P, et al. Loss-of-function mutation in thiamine transporter 1 in a family with autosomal dominant diabetes. Diabetes. 2019;68:1084–93. (A description of heterozygous carriers of the gene that causes thiamine-responsive megaloblastic anemia, which manifests as adult-onset diabetes.)

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif