Chidamide and venetoclax synergistically exert cytotoxicity on multiple myeloma by upregulating BIM expression

DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. New Engl J Med. 2020;383(7):617–29. https://doi.org/10.1056/NEJMoa2012971.

CAS  Article  PubMed  Google Scholar 

Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D’Rozario J, Assouline S, et al. Venetoclax–rituximab in relapsed or refractory chronic lymphocytic leukemia. New Engl J Med. 2018;378(12):1107–20. https://doi.org/10.1056/NEJMoa1713976.

CAS  Article  PubMed  Google Scholar 

Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135(24):2137–45. https://doi.org/10.1182/blood.2020004856.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fischer K, Al-Sawaf O, Bahlo J, Fink AM, Tandon M, Dixon M, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. New Engl J Med. 2019;380(23):2225–36. https://doi.org/10.1056/NEJMoa1815281.

CAS  Article  PubMed  Google Scholar 

Le Gouill S, Morschhauser F, Chiron D, Bouabdallah K, Cartron G, Casasnovas O, et al. Ibrutinib, obinutuzumab, and venetoclax in relapsed and untreated patients with mantle cell lymphoma: a phase 1/2 trial. Blood. 2021;137(7):877–87. https://doi.org/10.1182/blood.2020008727.

CAS  Article  PubMed  Google Scholar 

Zhao S, Kanagal-Shamanna R, Navsaria L, Ok CY, Zhang S, Nomie K, et al. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma (MCL) - outcomes and mutation profile from venetoclax resistant MCL patients. Am J Hematol. 2020;95(6):623–9. https://doi.org/10.1002/ajh.25796.

CAS  Article  PubMed  Google Scholar 

Bodet L, Gomez-Bougie P, Touzeau C, Dousset C, Descamps G, Maïga S, et al. ABT-737 is highly effective against molecular subgroups of multiple myeloma. Blood. 2011;118(14):3901–10. https://doi.org/10.1182/blood-2010-11-317438.

CAS  Article  PubMed  Google Scholar 

Kumar S, Kaufman JL, Gasparetto C, Mikhael J, Vij R, Pegourie B, et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood. 2017;130(22):2401–9. https://doi.org/10.1182/blood-2017-06-788786.

CAS  Article  PubMed  Google Scholar 

Kumar SK, Harrison SJ, Cavo M, de la Rubia J, Popat R, Gasparetto C, et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2020;21(12):1630–42. https://doi.org/10.1016/s1470-2045(20)30525-8.

CAS  Article  PubMed  Google Scholar 

Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, Souers AJ, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28(1):210–2. https://doi.org/10.1038/leu.2013.216.

CAS  Article  PubMed  Google Scholar 

Punnoose EA, Leverson JD, Peale F, Boghaert ER, Belmont LD, Tan N, et al. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol Cancer Ther. 2016;15(5):1132–44. https://doi.org/10.1158/1535-7163.Mct-15-0730.

CAS  Article  PubMed  Google Scholar 

Shi Y, Jia B, Xu W, Li W, Liu T, Liu P, et al. Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China. J Hematol Oncol. 2017;10(1):69. https://doi.org/10.1186/s13045-017-0439-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shi Y, Dong M, Hong X, Zhang W, Feng J, Zhu J, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol Off J Eur Soc Med Oncol. 2015;26(8):1766–71. https://doi.org/10.1093/annonc/mdv237.

CAS  Article  Google Scholar 

He J, Chen Q, Gu H, Chen J, Zhang E, Guo X, et al. Therapeutic effects of the novel subtype-selective histone deacetylase inhibitor chidamide on myeloma-associated bone disease. Haematologica. 2018;103(8):1369–79. https://doi.org/10.3324/haematol.2017.181172.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lin L, Que Y, Lu P, Li H, Xiao M, Zhu X, et al. Chidamide inhibits acute myeloid leukemia cell proliferation by lncRNA VPS9D1-AS1 downregulation via MEK/ERK signaling pathway. Front Pharmacol. 2020;11:569651. https://doi.org/10.3389/fphar.2020.569651.

CAS  Article  PubMed  PubMed Central  Google Scholar 

San José-Enériz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC inhibitors in acute myeloid leukemia. Cancers. 2019. https://doi.org/10.3390/cancers11111794.

Article  PubMed  PubMed Central  Google Scholar 

Touzeau C, Maciag P, Amiot M, Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia. 2018;32(9):1899–907. https://doi.org/10.1038/s41375-018-0223-9.

CAS  Article  PubMed  Google Scholar 

Inoue S, Walewska R, Dyer MJ, Cohen GM. Downregulation of Mcl-1 potentiates HDACi-mediated apoptosis in leukemic cells. Leukemia. 2008;22(4):819–25. https://doi.org/10.1038/leu.2008.1.

CAS  Article  PubMed  Google Scholar 

Adams CM, Hiebert SW, Eischen CM. Myc induces miRNA-mediated apoptosis in response to HDAC inhibition in hematologic malignancies. Cancer Res. 2016;76(3):736–48. https://doi.org/10.1158/0008-5472.Can-15-1751.

CAS  Article  PubMed  Google Scholar 

Locatelli SL, Cleris L, Stirparo GG, Tartari S, Saba E, Pierdominici M, et al. BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts. Leukemia. 2014;28(9):1861–71. https://doi.org/10.1038/leu.2014.81.

CAS  Article  PubMed  Google Scholar 

Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma. 2017;58(9):1–17. https://doi.org/10.1080/10428194.2017.1283032.

CAS  Article  PubMed  Google Scholar 

Kapoor I, Bodo J, Hill BT, Hsi ED, Almasan A. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis. 2020;11(11):941–941. https://doi.org/10.1038/s41419-020-03144-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Pan DS, Shan S, Zhu JZ, Zhang K, Yue XP, et al. Non-toxic dose chidamide synergistically enhances platinum-induced DNA damage responses and apoptosis in non-small-cell lung cancer cells. Biomed Pharmacother. 2014;68(4):483–91. https://doi.org/10.1016/j.biopha.2014.03.011.

CAS  Article  PubMed  Google Scholar 

Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang L, et al. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin Epigenetics. 2017;9:83. https://doi.org/10.1186/s13148-017-0377-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ye J, Zha J, Shi Y, Li Y, Yuan D, Chen Q, et al. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Clin Epigenetics. 2019;11(1):137. https://doi.org/10.1186/s13148-019-0723-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tsukuda T, Fleming AB, Nickoloff JA, Osley MA. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature. 2005;438(7066):379–83. https://doi.org/10.1038/nature04148.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–45. https://doi.org/10.1016/j.molcel.2007.11.015.

CAS  Article  PubMed  Google Scholar 

Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100(1):194–9. https://doi.org/10.1182/blood.v100.1.194.

CAS  Article  PubMed  Google Scholar 

Wuillème-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H, et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2005;19(7):1248–52. https://doi.org/10.1038/sj.leu.2403784.

CAS  Article  PubMed  Google Scholar 

Morales AA, Kurtoglu M, Matulis SM, Liu J, Siefker D, Gutman DM, et al. Distribution of bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood. 2011;118(5):1329–39. https://doi.org/10.1182/blood-2011-01-327197.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death. Cell Mol Life Sci CMLS. 2014;71(20):3885–901. https://doi.org/10.1007/s00018-014-1656-6.

CAS  Article  PubMed  Google Scholar 

Natarajan U, Venkatesan T, Radhakrishnan V, Samuel S, Rasappan P, Rathinavelu A. Cell cycle arrest and cytotoxic effects of SAHA and RG7388 mediated through p21(WAF1/CIP1) and p27(KIP1) in cancer cells. Medicina (Kaunas, Lithuania). 2019. https://doi.org/10.3390/medicina55020030.

Article  Google Scholar 

Jingsong H, Qingxiao C, Huiyao G, Jing C, Enfan Z, Xing G, et al. Therapeutic effects of the novel subtype-selective histone deacetylase inhibitor chidamide on myeloma-associated bone disease. Haematologica. 2018;103(8):1369–79. https://doi.org/10.3324/haematol.2017.181172.

CAS  Article  Google Scholar 

Pack LR, Daigh LH, Chung M, Meyer T. Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2. N

留言 (0)

沒有登入
gif