Grape seed and skin extract, a potential prebiotic with anti-obesity effect through gut microbiota modulation

Vandevijvere S, Chow CC, Hall KD, Umali E, Swinburn BA. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull World Health Organ. 2015;93:446–56.

PubMed  PubMed Central  Article  Google Scholar 

World Health Organization (WHO). World Health Organization (WHO). 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

NCD-Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–96.

Article  Google Scholar 

El-Kebbi IM, Bidikian NH, Hneiny L, Nasrallah MP. Epidemiology of type 2 diabetes in the Middle East and North Africa: challenges and call for action. World J Diabetes. 2021;12:1401–25.

PubMed  PubMed Central  Article  Google Scholar 

Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:1–29.

Article  CAS  Google Scholar 

Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107. https://doi.org/10.1038/nri2925.

CAS  Article  PubMed  Google Scholar 

Bedhiafi T, Charradi K, Ben Azaiz M, Mahmoudi M, Msakni I, Jebari K, et al. Supplementation of grape seed and skin extract to orlistat therapy prevents high-fat diet-induced murine spleen lipotoxicity. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2018. https://doi.org/10.1139/apnm-2017-0743.

Article  Google Scholar 

Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11:1–12. https://doi.org/10.1038/s41467-020-18871-1.

CAS  Article  Google Scholar 

Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11:639–47. https://doi.org/10.1038/nrmicro3089.

CAS  Article  PubMed  Google Scholar 

Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11:1–10.

PubMed  Article  Google Scholar 

Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34:4270–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:1–12. https://doi.org/10.1186/s13073-016-0303-2.

CAS  Article  Google Scholar 

Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Delzenne NM. Changes in gut microbiota control metabolic diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

CAS  PubMed  Article  Google Scholar 

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19:55–71. https://doi.org/10.1038/s41579-020-0433-9.

CAS  Article  PubMed  Google Scholar 

Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13. https://doi.org/10.1038/nm.4236.

CAS  Article  PubMed  Google Scholar 

Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36.

CAS  PubMed  Article  Google Scholar 

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

CAS  PubMed  Article  Google Scholar 

Mocanu V, Zhang Z, Deehan EC, Kao DH, Hotte N, Karmali S, et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat Med. 2021;27:1272–9. https://doi.org/10.1038/s41591-021-01399-2.

CAS  Article  PubMed  Google Scholar 

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80. https://doi.org/10.1038/nature09944.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Le Barz M, Anhê FF, Varin TV, Desjardins Y, Levy E, Roy D, et al. Probiotics as complementary treatment for metabolic disorders. Diabetes Metab J. 2015;39:291–303.

PubMed  PubMed Central  Article  Google Scholar 

Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013;500:585–8. http://www.nature.com/articles/nature12480

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502. https://doi.org/10.1038/nrgastro.2017.75.

Article  PubMed  Google Scholar 

Anhê FF, Varin TV, Le Barz M, Desjardins Y, Levy E, Roy D, et al. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep. 2015;4:389–400.

PubMed  Article  Google Scholar 

Alves-Santos AM, Sugizaki CSA, Lima GC, Naves MMV. Prebiotic effect of dietary polyphenols: a systematic review. J Funct Foods. 2020;74:104169. https://doi.org/10.1016/j.jff.2020.104169.

CAS  Article  Google Scholar 

Dudonné S, Varin TV, Forato Anhê F, Dubé P, Roy D, Pilon G, et al. Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice. PharmaNutrition. 2015;3:89–100. https://doi.org/10.1016/j.phanu.2015.04.002.

CAS  Article  Google Scholar 

Cheah KY, Bastian SEP, Acott TMV, Abimosleh SM, Lymn KA, Howarth GS. Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Dig Dis Sci. 2013;58:970–7.

PubMed  Article  Google Scholar 

Charradi K, Mahmoudi M, Bedhia T, Kadri S. ScienceDirect Dietary supplementation of grape seed and skin flour mitigates brain oxidative damage induced by a high-fat diet in rat: gender dependency. Biomed Pharmacother. 2017;87:519–26.

CAS  PubMed  Article  Google Scholar 

Mahmoudi M, Charradi K, Limam F, Aouani E. Grape seed and skin extract as an adjunct to xenical therapy reduces obesity, brain lipotoxicity and oxidative stress in high fat diet fed rats. Obes Res Clin Pract. 2018;12:115–26.

PubMed  Article  Google Scholar 

Kadri S, El Ayed M, Cosette P, Jouenne T, Elkhaoui S, Zekri S, et al. Neuroprotective effect of grape seed extract on brain ischemia: a proteomic approach. Metab Brain Dis. 2019;34:889–907.

CAS  PubMed  Article  Google Scholar 

Ke J, An Y, Cao B, Lang J, Wu N, Zhao D. Orlistat-induced gut microbiota modification in obese mice. Evid Based Complement Altern Med. 2020;2020:1–9.

Article  Google Scholar 

Orlistat (marketed as Alli and Xenical) Information | FDA [Internet]. [cited 2022 Feb 23]. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/orlistat-marketed-alli-and-xenical-information

Filippatos TD, Derdemezis CS, Gazi IF, Nakou ES, Mikhailidis DP, Elisaf MS. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 2008;31:53–65.

CAS  PubMed  Article  Google Scholar 

Mokni M, Hamlaoui S, Kadri S, Limam F, Amri M, Marzouki L, et al. Efficacy of grape seed and skin extract against doxorubicin-induced oxidative stress in rat liver. Pak J Pharm Sci. 2015;28:1971–8.

CAS  PubMed  Google Scholar 

Escudié F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, et al. FROGS: find, rapidly, OTUs with galaxy solution. Bioinformatics (Oxford, England). 2018;34:1287–94.

Article  CAS  Google Scholar 

Volant S, Lechat P, Woringer P, Motreff L, Campagne P, Malabat C, et al. Open Access SHAMAN : a user-friendly website for metataxonomic analysis from raw reads to statistical analysis. BMC Bioinform. 2020. https://doi.org/10.1186/s12859-020-03666-4.

Article  Google Scholar 

Janda MW. The genus streptococcus—part i: emerging pathogens in the “Pyogenic Cocci” and the “Streptococcus bovis. Groups Clin Microbiol Newslett. 2014;36(20):157–66.

Article  Google Scholar 

Jiao X, Wang Y, Lin Y, Lang Y, Li E, Zhang X, et al. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6J mice by modulating the gut microbiota. J Nutr Biochem. 2019;64:88–100.

CAS  PubMed  Article  Google Scholar 

Ke X, Walker A, Haange SB. Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol Metab. 2019;22:96–109.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Collins B, Hoffman J, Martinez K, Grace M, Lila MA, Cockrell C, et al. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. J Nutr Biochem. 2016;31:150–65. https://doi.org/10.1016/j.jnutbio.2015.12.021.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-28126-1.

Article  PubMed  PubMed Central  Google Scholar 

Zeng H, Ishaq SL, Zhao FQ, Wright ADG. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J Nutr Biochem. 2016;35:30–6.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif