Insertion orientation within the cassette affects gene-targeting success during ends-out recombination in the yeast Saccharomyces cerevisiae

Aguilera A, Gaillard H (2014) Transcription and recombination: when RNA meets DNA. Cold Spring Harb Perspect Biol 6:a016543. https://doi.org/10.1101/cshperspect.a016543

CAS  Article  PubMed  PubMed Central  Google Scholar 

Amberg DC, Botstein D, Beasley EM (1995) Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction. Yeast 11:1275–1280. https://doi.org/10.1002/yea.320111307

CAS  Article  PubMed  Google Scholar 

Astromskas E, Cohn M (2009) Ends-in vs. ends-out targeted insertion mutagenesis in Saccharomyces castellii. Curr Genet 55:339–347. https://doi.org/10.1007/s00294-009-0248-8

CAS  Article  PubMed  Google Scholar 

Baganz F, Hayes A, Marren D, Gardner DC, Oliver SG (1997) Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast 13:1563–1573. https://doi.org/10.1002/(SICI)1097-0061(199712)13:16%3c1563::AID-YEA240%3e3.0.CO;2-6

CAS  Article  PubMed  Google Scholar 

Bailis AM, Maines S (1996) Nucleotide excision repair gene function in short-sequence recombination. J Bacteriol 178:2136–2140. https://doi.org/10.1128/jb.178.7.2136-2140.1996

CAS  Article  PubMed  PubMed Central  Google Scholar 

Baldari C, Cesareni G (1985) Plasmids pEMBLY: new single-stranded shuttle vectors for the recovery and analysis of yeast DNA sequences. Gene 35:27–32. https://doi.org/10.1016/0378-1119(85)90154-4

CAS  Article  PubMed  Google Scholar 

Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330. https://doi.org/10.1093/nar/21.14.3329

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cross FR (1997) “Marker swap” plasmids: convenient tools for budding yeast molecular genetics. Yeast 13:647–653. https://doi.org/10.1002/(SICI)1097-0061(19970615)13:7%3c647::AID-YEA115%3e3.0.CO;2-#

CAS  Article  PubMed  Google Scholar 

Delneri D, Tomlin GC, Wixon JL, Hutter A, Sefton M, Louis EJ, Oliver SG (2000) Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252:127–135. https://doi.org/10.1016/s0378-1119(00)00217-1

CAS  Article  PubMed  Google Scholar 

Edlind TD, Henry KW, Vermitsky J-P, Edlind MP, Raj S, Katiyar SK (2005) Promoter-dependent disruption of genes: simple, rapid, and specific PCR-based method with application to three different yeast. Curr Genet 48:117–125. https://doi.org/10.1007/s00294-005-0008-3

CAS  Article  PubMed  Google Scholar 

Estruch F, Prieto JA (2003) Construction of a Trp– commercial baker’s yeast strain by using food-safe-grade dominant drug resistance cassettes. FEMS Yeast Res 4:329–338. https://doi.org/10.1016/S1567-1356(03)00164-8

CAS  Article  PubMed  Google Scholar 

Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. https://doi.org/10.1038/nature00935

CAS  Article  PubMed  Google Scholar 

Gjuračić K, Zgaga Z (1996) Illegitimate integration of single-stranded DNA in Saccharomyces cerevisiae. Mol Gen Genet 253:173–181. https://doi.org/10.1007/s004380050310

Article  PubMed  Google Scholar 

Glantz SA (1997) Primer of biostatistics. McGRAW-HILL, New York

Google Scholar 

Goldstein AL, Pan X, McCusker JH (1999) Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae. Yeast 15:507–511. https://doi.org/10.1002/(SICI)1097-0061(199904)15:6%3c507::AID-YEA369%3e3.0.CO;2-P

CAS  Article  PubMed  Google Scholar 

Gray M, Honigberg SM (2001) Effect of chromosomal locus, GC content and length of homology on PCR-mediated targeted gene replacement in Saccharomyces. Nucleic Acids Res 29:5156–5162. https://doi.org/10.1093/nar/29.24.5156

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hashimoto S, Ogura M, Aritomi K, Hoshida H, Nishizawa Y, Akada R (2005) Isolation of auxatrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol 71:312–319. https://doi.org/10.1128/AEM.71.1.312-319.2005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hegemann JH, Gldener U, Köhler GJ (2006) Gene disruption in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 313:129–144. https://doi.org/10.1385/1-59259-958-3:129

CAS  Article  PubMed  Google Scholar 

Jaquet L, Jauniaux JC (1999) Disruption and basic functional analysis of five chromosome X novel ORFs of Saccharomyces cerevisiae reveals YJL125c as an essential gene for vegetative growth. Yeast 15:51–61. https://doi.org/10.1002/(SICI)1097-0061(19990115)15:1%3c51::AID-YEA330%3e3.0.CO;2-1

CAS  Article  PubMed  Google Scholar 

Kegel A, Sjöstrand JO, Åström SU (2001) Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr Biol 11:1611–1617. https://doi.org/10.1016/s0960-9822(01)00488-2

CAS  Article  PubMed  Google Scholar 

Klinner U, Schäfer B (2004) Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 28:201–223. https://doi.org/10.1016/j.femsre.2003.10.002

CAS  Article  PubMed  Google Scholar 

Koren P, Svetec IK, Mitrikeski PT, Zgaga Z (2000) Influence of homology size and polymorphism on plasmid integration in the yeast CYC1 DNA region. Curr Genet 37:292–297. https://doi.org/10.1007/s002940050530

CAS  Article  PubMed  Google Scholar 

Koyama H, Sumiya E, Ito T, Sekimizu K (2008) Improved method for the PCR-based gene disruption in Saccharomyces cerevisiae. FEMS Yeast Res 8:193–194. https://doi.org/10.1111/j.1567-1364.2007.00334.x

CAS  Article  PubMed  Google Scholar 

Längle-Rouault F, Jacobs E (1995) A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Res 23:3079–3081. https://doi.org/10.1093/nar/23.15.3079

Article  PubMed  PubMed Central  Google Scholar 

Lundblad V, Hartzog G, Moqtaderi Z (2001) Manipulation of cloned yeast DNA. Curr Protoc Mol Biol Chapter 13(Unit13):10. https://doi.org/10.1002/0471142727.mb1310s39

Article  Google Scholar 

Manivasakam P, Weber SC, McElver J, Schiestl RH (1995) Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res 23:2799–2800. https://doi.org/10.1093/nar/23.14.2799

CAS  Article  PubMed  PubMed Central  Google Scholar 

Miklenić M, Štafa A, Bajić A, Žunar B, Lisnić B, Svetec IK (2013) Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA. J Microbiol Biotechnol 23:674–680. https://doi.org/10.4014/jmb.1211.11047

CAS  Article  PubMed  Google Scholar 

Mitrikeski PT, Šimatović A, Brčić-Kostić K (2014) Simultaneous plasmid integration: a unifying model of multiple plasmid integration into the yeast chromosome. Period Biol 116:241–247

Google Scholar 

Nicolas A, Treco D, Schultes NP, Szostak JW (1989) An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338:35–39. https://doi.org/10.1038/338035a0

CAS  Article  PubMed  Google Scholar 

Puig O, Rutz B, Luukkonen BG, Kandels-Lewis S, Bragado-Nilsson E, Séraphin B (1998) New constructs and strategies for efficient PCR-based gene manipulations in yeast. Yeast 14:1139–1146. https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12%3c1139::AID-YEA306%3e3.0.CO;2-B

CAS  Article  PubMed  Google Scholar 

Rieger KJ, Kaniak A, Coppée JY, Aljinovic G, Baudin-Baillieu A, Orlowska G, Gromadka R, Groudinsky O, Di Rago JP, Slonimski PP (1997) Large-scale phenotypic analysis-the pilot project on yeast chromosome III. Yeast 13:1547–1562. https://doi.org/10.1002/(SICI)1097-0061(199712)13:16%3c1547::AID-YEA230%3e3.0.CO;2-Y

CAS  Article  PubMed  Google Scholar 

Rose M, Winston F (1984) Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol Gen Genet 193:557–560. https://doi.org/10.1007/BF00382100

CAS  Article  PubMed  Google Scholar 

Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211. https://doi.org/10.1016/0076-6879(83)01015-0

CAS  Article  PubMed  Google Scholar 

Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301. https://doi.org/10.1016/0076-6879(91)94022-5

CAS  Article  PubMed  Google Scholar 

Sambrook J, Russell DW (2001) Molecular Cloning – A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

Google Scholar 

Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457. https://doi.org/10.1093/genetics/112.3.441

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif