MAIT cells and their implication in human oral diseases

Nel I, Bertrand L, Toubal A, Lehuen A. MAIT cells, guardians of skin and mucosa? Mucosal Immunol. 2021;14(4):803–14. https://doi.org/10.1038/s41385-021-00391-w.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Porcelli S, Yockey CE, Brenner MB, Balk SP. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med. 1993;178(1):1–16. https://doi.org/10.1084/jem.178.1.1.

CAS  Article  PubMed  Google Scholar 

Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422(6928):164–9. https://doi.org/10.1038/nature01433.

CAS  Article  PubMed  Google Scholar 

Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343–53. https://doi.org/10.1038/ni.3123.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chandra S, Kronenberg M. Activation and function of iNKT and MAIT Cells. Adv Immunol. 2015;127:145–201. https://doi.org/10.1016/bs.ai.2015.03.003.

CAS  Article  PubMed  Google Scholar 

Schmaler M, Colone A, Spagnuolo J, Zimmermann M, Lepore M, Kalinichenko A, et al. Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. Mucosal Immunol. 2018;11(4):1060–70. https://doi.org/10.1038/s41385-018-0020-9.

CAS  Article  PubMed  Google Scholar 

Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: new players in old game. Int Rev Immunol. 2018;37(2):90–110. https://doi.org/10.1080/08830185.2017.1380199.

CAS  Article  PubMed  Google Scholar 

Zumwalde NA, Gumperz JE. Mucosal-associated invariant T cells in tumors of epithelial origin. Adv Exp Med Biol. 2020;1224:63–77. https://doi.org/10.1007/978-3-030-35723-8_5.

CAS  Article  PubMed  Google Scholar 

Marie L, Angelis D. The role of Candida in oral lichen planus (OLP). In: The University of Melbourne Library, Minerva Access, 2019; https://hdl.handle.net/11343/241240. Accessed 23 May 2022.

Konuma T, Kohara C, Watanabe E, Takahashi S, Ozawa G, Suzuki K, et al. Reconstitution of circulating mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation: its association with the riboflavin synthetic pathway of gut microbiota in cord blood transplant recipients. J Immunol. 2020;204(6):1462–73. https://doi.org/10.4049/jimmunol.1900681.

CAS  Article  PubMed  Google Scholar 

Petley EV, Koay HF, Henderson MA, Sek K, Todd KL, Keam SP, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12(1):4746. https://doi.org/10.1038/s41467-021-25009-4.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jewett A, Kos J, Fong Y, Ko MW, Safaei T, Perišić Nanut M, et al. NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin Cancer Biol. 2018;53:178–88. https://doi.org/10.1016/j.semcancer.2018.08.001.

CAS  Article  PubMed  Google Scholar 

Lee JJ, Yeh CY, Jung CJ, Chen CW, Du MK, Yu HM, et al. Skewed distribution of IL-7 receptor-alpha-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma. PLoS ONE. 2014;9(1): e85521. https://doi.org/10.1371/journal.pone.0085521.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sundström P, Szeponik L, Ahlmanner F, Sundquist M, Wong JSB, Lindskog EB, et al. Tumor-infiltrating mucosal-associated invariant T (MAIT) cells retain expression of cytotoxic effector molecules. Oncotarget. 2019;10(29):2810–23. https://doi.org/10.18632/oncotarget.26866.

Article  PubMed  PubMed Central  Google Scholar 

Davanian H, Gaiser RA, Silfverberg M, Hugerth LW, Sobkowiak MJ, Lu L, et al. Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int J Oral Sci. 2019;11(2):16. https://doi.org/10.1038/s41368-019-0049-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang JJ, Macardle C, Weedon H, Beroukas D, Banovic T. Mucosal-associated invariant T cells are reduced and functionally immature in the peripheral blood of primary Sjögren’s syndrome patients. Eur J Immunol. 2016;46(10):2444–53. https://doi.org/10.1002/eji.201646300.

CAS  Article  PubMed  Google Scholar 

Guggino G, Liberto DD, Pizzo ML, Saieva L, Alessandro R, Dieli F, Triolo G, Cacciatore F. IL-17 polarization of MAIT cells is derived from the activation of two different pathways. Eur J Immunol. 2017;47(11):2002–3. https://doi.org/10.1002/eji.201747140.

CAS  Article  PubMed  Google Scholar 

Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117(4):1250–9. https://doi.org/10.1182/blood-2010-08-303339.

CAS  Article  PubMed  Google Scholar 

Wang SR, Zhong N, Zhang XM, Zhao ZB, Balderas R, Li L, et al. OMIP 071: a 31-parameter flow cytometry panel for in-depth immunophenotyping of human T-cell subsets using surface markers. Cytometry A. 2021;99(3):273–7. https://doi.org/10.1002/cyto.a.24272.

CAS  Article  PubMed  Google Scholar 

Acquaviva M, Bassani C, Sarno N, Dalla Costa G, Romeo M, Sangalli F, et al. Loss of circulating CD8+CD161 high T cells in primary progressive multiple sclerosis. Front Immunol. 2019;10:1922. https://doi.org/10.3389/fimmu.2019.01922.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leeansyah E, Loh L, Nixon DF, Sandberg JK. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun. 2014;5:3143. https://doi.org/10.1038/ncomms4143.

CAS  Article  PubMed  Google Scholar 

Koay H-F, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF, et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol. 2016;17(11):1300–11. https://doi.org/10.1038/ni.3565.

CAS  Article  PubMed  Google Scholar 

Koay H-F, Godfrey DI. MicroRNA-managing the development of MAIT cells. Immunol Cell Biol. 2019;97(2):121–3. https://doi.org/10.1111/imcb.12232.

Article  PubMed  Google Scholar 

Legoux F, Bellet D, Daviaud C, Morr YE, Darbois A, Niort K. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science. 2019;366(6464):494–9. https://doi.org/10.1126/science.aaw2719.

CAS  Article  PubMed  Google Scholar 

Walker LJ, Tharmalingam H, Klenerman P. The rise and fall of MAIT cells with age. Scand J Immunol. 2014;80(6):462–3. https://doi.org/10.1111/sji.12237.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Keller AN, Eckle SB, Xu W, Liu L, Hughes VA, Mak JY, et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat Immunol. 2017;18(4):402–11. https://doi.org/10.1038/ni.3679.

CAS  Article  PubMed  Google Scholar 

Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320. https://doi.org/10.1038/srep32320.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ussher JE, van Wilgenburg B, Hannaway RF, Ruustal K, Phalora P, Kurioka A, et al. TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur J Immunol. 2016;46(7):1600–14. https://doi.org/10.1002/eji.201545969.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sattler A, Dang-Heine C, Reinke P, Babel N. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur J Immunol. 2015;45(8):2286–98. https://doi.org/10.1002/eji.201445313.

CAS  Article  PubMed  Google Scholar 

Willing A, Jäger J, Reinhardt S, Kursawe N, Friese MA. Production of IL-17 by MAIT cells is increased in multiple sclerosis and is associated with IL-7 receptor expression. J Immunol. 2018;200(3):974–82. https://doi.org/10.4049/jimmunol.1701213.

CAS  Article  PubMed  Google Scholar 

Cole S, Murray J, Simpson C, Okoye R, Tyson K, Griffiths M, et al. Interleukin (IL)-12 and IL-18 synergize to promote MAIT cell IL-17A and IL-17F production independently of IL-23 signaling. Front Immunol. 2020;11: 585134. https://doi.org/10.3389/fimmu.2020.585134.

CAS  Article  PubMed  PubMed Central  Google Scholar 

van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7:11653. https://doi.org/10.1038/ncomms11653.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wilgenburg BV, Loh L, Chen Z, Pediongco TJ, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9(1):4706. https://doi.org/10.1038/s41467-018-07207-9.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sobkowiak MJ, Davanian H, Heymann R, Gibbs A, Emgård J, Dias J, et al. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur J Immunol. 2019;49(1):133–43. https://doi.org/10.1002/eji.201847759.

CAS  Article  PubMed  Google Scholar 

Ichimura M, Hiratsuka K, Ogura N, Utsunomiya T, Sakamaki H, Kondoh T, et al. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J Oral Pathol

留言 (0)

沒有登入
gif