Connexin 32 overexpression increases proliferation, reduces gap junctional intercellular communication, motility and epithelial-to-mesenchymal transition in Hs578T breast cancer cells

Ableser MJ, Penuela S, Lee J, Shao Q, Laird DW (2014) Connexin43 reduces melanoma growth within a keratinocyte microenvironment and during tumorigenesis in vivo. J Biol Chem 289(3):1592–1603. https://doi.org/10.1074/jbc.M113.507228

CAS  Article  PubMed  Google Scholar 

Adak A, Unal YC, Yucel S, Vural Z, Turan FB, Yalcin-Ozuysal O et al (2020) Connexin 32 induces pro-tumorigenic features in MCF10A normal breast cells and MDA-MB-231 metastatic breast cancer cells. Biochimica Et Biophysica Acta BBA - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2020.118851

Article  PubMed  Google Scholar 

Avanzo JL, Mesnil M, Hernandez-Blazquez FJ, Mackowiak II, Mori CMC, da Silva TC et al (2004) Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis 25(10):1973–1982. https://doi.org/10.1093/carcin/bgh193

CAS  Article  PubMed  Google Scholar 

Banerjee D (2016) Connexin’s connection in breast cancer growth and progression. Int J Cell Bio. https://doi.org/10.1155/2016/9025905

Article  Google Scholar 

Bedner P, Steinhäuser C, Theis M (2012) Functional redundancy and compensation among members of gap junction protein families. Biochimica Et Biophysica Acta BBA - Biomembranes. https://doi.org/10.1016/j.bbamem.2011.10.016

Article  PubMed  Google Scholar 

Bond SL, Bechberger JF, Khoo NK, Naus CC (1994) Tranfection of C6 glioma cells with connexin32: the effects of expression of a nonendogenous gap junction protein. Cell Growth Differ 5:179–186

CAS  PubMed  Google Scholar 

Brauner T, Hülser DF (1990) Tumor cell invasion and gap junctional communication II. Normal and Malignant Cells Confronted in Multieell Spheroids’ Invasion Metastasis 10:31–43

CAS  Google Scholar 

Burt JM, Nelson TK, Simon AM, Fang JS (2008) Connexin 37 profoundly slows cell cycle progression in rat insulinoma cells. Am J Physiol-Cell Physiol. https://doi.org/10.1152/ajpcell.299.2008

Article  PubMed  PubMed Central  Google Scholar 

Chakraborty S, Mitra S, Falk MM, Caplan SH, Wheelock MJ, Johnson KR et al (2010) E-cadherin differentially regulates the assembly of Connexin43 and Connexin32 into gap junctions in human squamous carcinoma cells. J Biol Chem 285(14):10761–10776

CAS  Article  Google Scholar 

Chen SC, Pelletier DB, Peng A, Boynton AL (1995) Connexin43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ 6:681–690

CAS  PubMed  Google Scholar 

Contreras JE, Sáez JC, Bukauskas FF, Bennett MVL (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. PNAS 100(20):11388–11393. https://doi.org/10.1073/pnas.1434298100

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11(2):323–338. https://doi.org/10.1089/ars.2008.2153

CAS  Article  PubMed  Google Scholar 

Dahl G, Muller KJ (2014) Innexin and pannexin channels and their signaling. FEBS Lett 588(8):1396–1402. https://doi.org/10.1016/j.febslet.2014.03.007

CAS  Article  PubMed  Google Scholar 

Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242(1–2):35–38

CAS  Article  Google Scholar 

Deocesano-Pereira C, Machado RAC, De Jesus-Ferreira HC, Marchini T, Pereira TF, Carreira ACO et al (2019) Functional impact of the long non-coding RNA MEG3 deletion by CRISPR/Cas9 in the human triple negative metastatic Hs578T cancer cell line. Oncol Lett 18(6):5941–5951. https://doi.org/10.3892/ol.2019.10969

CAS  Article  PubMed  PubMed Central  Google Scholar 

Duflot-Dancer AM, Mesnil M, Yamasaki H (1997) Dominant-negative abrogation of connexin-mediated cell growth control by mutant connexin genes. Oncogene 18:2151–2158

Article  Google Scholar 

Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC (1991) Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci U S A 88(23):10701–10705. https://doi.org/10.1073/pnas.88.23.10701

CAS  Article  PubMed  PubMed Central  Google Scholar 

Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK (2009) Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci U S A 106(9):3567–3572. https://doi.org/10.1073/pnas.0813413106

Article  PubMed  PubMed Central  Google Scholar 

Fujimoto E, Satoh H, Negishi E, Ueno K, Nagashima Y, Hagiwara K et al (2004) Negative growth control of renal cell carcinoma cell by connexin 32: possible involvement of Her-2. Mol Carcinog 40(3):135–142. https://doi.org/10.1002/mc.20025

CAS  Article  PubMed  Google Scholar 

Graeber SH, Hülser DF (1998) Connexin transfection induces invasive properties in HeLa cells. Exp Cell Res 243(1):142–149. https://doi.org/10.1006/excr.1998.4130

CAS  Article  PubMed  Google Scholar 

Hada S, Sato H, Virgona N, Hagiwara H, Saito T, Suzuki K et al (2006) Connexin 32 expression reduces malignant phenotype in human A549 adenocarcinoma cells: Implication of Src involvement. Oncol Rep 16(5):1149–1154. https://doi.org/10.3892/or.16.5.1149

CAS  Article  PubMed  Google Scholar 

Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34(3):325–472. https://doi.org/10.1017/s0033583501003705

CAS  Article  PubMed  Google Scholar 

Hernandez-Blazquez FJ, Joazeiro PP, Omori Y, Yamasaki H (2001) Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells. Exp Cell Res 270(2):235–247. https://doi.org/10.1006/excr.2001.5342

CAS  Article  PubMed  Google Scholar 

Hirschi K, Xu C, Tsukamoto T, Sager R (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7(7):861–870

CAS  PubMed  Google Scholar 

Huang R-P, Fan Y, Hossain MZ, Peng A, Zeng Z-L, Boynton AL (1998) Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Can Res 58(22):5089–5096

CAS  Google Scholar 

Ito A, Katoh F, Kataoka TR, Okada M, Tsubota N, Asada H et al (2000) A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Investig 105(9):1189–1197. https://doi.org/10.1172/JCI8257

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ito A, Koma Y-i, Uchino K, Okada T, Ohbayashi C, Tsubota N et al (2006) Increased expression of connexin 26 in the invasive component of lung squamous cell carcinoma: Significant correlation with poor prognosis. Cancer Lett 234(2):239–248. https://doi.org/10.1016/j.canlet.2005.03.049

CAS  Article  PubMed  Google Scholar 

Jee H, Nam KT, Kwon H-J, Han S-U, Kim D-Y (2011) Altered expression and localization of connexin32 in human and murine gastric carcinogenesis. Dig Dis Sci 56(5):1323–1332. https://doi.org/10.1007/s10620-010-1467-z

CAS  Article  PubMed  Google Scholar 

Jee H, Lee S-H, Park J-W, Lee B-R, Nam KT, Kim D-Y (2013) Connexin32 inhibits gastric carcinogenesis through cell cycle arrest and altered expression of p21Cip1and p27Kip1. BMB Rep 46(1):25–30. https://doi.org/10.5483/bmbrep.2013.46.1.078

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jiang JX, Gu S (2005) Gap junction- and hemichannel-independent actions of connexins. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 1711(2):208–214

CAS  Article  Google Scholar 

Jiang G, Dong S, Yu M, Han X, Zheng C, Zhu X et al (2017) Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells. Oncol Lett 13(2):857–866. https://doi.org/10.3892/ol.2016.5471

CAS  Article  PubMed  Google Scholar 

Jin X, Mu P (2005) Targeting breast cancer metastasis. Breast Cancer (auckl) 9(Suppl 1):23–34. https://doi.org/10.4137/BCBCR.S25460

Article  Google Scholar 

Jones C, Payne J, Wells D, Delhanty JD, Lakhani SR, Kortenkamp A (2000) Comparative genomic hybridization reveals extensive variation among different MCF-7 cell stocks. Cancer Genet Cytogenet 117(2):153–158. https://doi.org/10.1016/s0165-4608(99)00158-2

CAS  Article  PubMed  Google Scholar 

Kanczuga-Koda L, Sulkowski S, Lenczewski A, Koda M, Wincewicz A, Baltaziak M et al (2006) Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J Clin Pathol 59(4):429–433

CAS  Article  Google Scholar 

Kanczuga-Koda L, Sulkowska M, Koda M, Rutkowski R, Sulkowski S (2007) Increased expression of gap junction protein–connexin 32 in lymph node metastases of human ductal breast cancer. Folia Histochem Cytobiol 45(I):175–180

CAS  Google Scholar 

Kanczuga-Koda L, Koda M, Sulkowski S, Wincewicz A, Zalewski B, Sulkowska M (2010) Gradual loss of functional gap junction within progression of colorectal cancer—a shift from membranous CX32 and CX43 expression to cytoplasmic pattern during colorectal carcinogenesis. In Vivo 24(1):101–107

CAS  PubMed  Google Scholar 

Kawasaki Y, Kubomoto A, Yamasaki H (2007) Control of intracellular localization and function of Cx43 by SEMA3F. J Membr Biol 217(1–3):53–61. https://doi.org/10.1007/s00232-007-9051-y

CAS  Article  PubMed  Google Scholar 

Kleensang A, Vantangoli M, Odwin-DaCosta S et al (2016) Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Sci Rep 6:28994. https://doi.org/10.1038/srep28994

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kotini M, Barriga EH, Leslie J, Gentzel M, Rauschenberger V, Schambon A, Mayor R (2018) Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. Nat Commun. https://doi.org/10.1038/s41467-018-06368-x

留言 (0)

沒有登入
gif