Chemokine receptor CCR9 suppresses the differentiation of CD4+CD8αα+ intraepithelial T cells in the gut

Calderon, L. & Boehm, T. Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus. Proc. Natl Acad. Sci. USA 108, 7517–7522 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Plotkin, J., Prockop, S. E., Lepique, A. & Petrie, H. T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).

CAS  PubMed  Article  Google Scholar 

Kadakia, T. et al. E-protein-regulated expression of CXCR4 adheres preselection thymocytes to the thymic cortex. J. Exp. Med. 216, 1749–1761 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kurobe, H. et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 24, 165–177 (2006).

CAS  PubMed  Article  Google Scholar 

Misslitz, A. et al. Thymic T cell development and progenitor localization depend on CCR7. J. Exp. Med. 200, 481–491 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Choi, Y. I. et al. PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. Immunity 29, 888–898 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Uehara, S., Grinberg, A., Farber, J. M. & Love, P. E. A role for CCR9 in T lymphocyte development and migration. J. Immunol. 168, 2811–2819 (2002).

CAS  PubMed  Article  Google Scholar 

Wurbel, M. A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood 98, 2626–2632 (2001).

CAS  PubMed  Article  Google Scholar 

Wurbel, M. A., Malissen, B. & Campbell, J. J. Complex regulation of CCR9 at multiple discrete stages of T cell development. Eur. J. Immunol. 36, 73–81 (2006).

CAS  PubMed  Article  Google Scholar 

Krishnamoorthy, V. et al. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway. J. Immunol. 194, 3191–3200 (2015).

CAS  PubMed  Article  Google Scholar 

Ohoka, Y., Yokota, A., Takeuchi, H., Maeda, N. & Iwata, M. Retinoic acid-induced CCR9 expression requires transient TCR stimulation and cooperativity between NFATc2 and the retinoic acid receptor/retinoid X receptor complex. J. Immunol. 186, 733–744 (2011).

CAS  PubMed  Article  Google Scholar 

Cassani, B. et al. Gut-tropic T cells that express integrin α4β7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141, 2109–2118 (2011).

CAS  PubMed  Article  Google Scholar 

Svensson, M. et al. CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J. Clin. Investig. 110, 1113–1121 (2002).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xu, Y. et al. In Vivo Generation of Gut-Homing Regulatory T Cells for the Suppression of Colitis. J. Immunol. 202, 3447–3457 (2019).

CAS  PubMed  Article  Google Scholar 

Guy-Grand, D. et al. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J. Exp. Med. 173, 471–481 (1991).

CAS  PubMed  Article  Google Scholar 

Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Olivares-Villagomez, D. & Kaer, Van L. Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol. 39, 264–275 (2018).

CAS  PubMed  Article  Google Scholar 

Van Kaer, L. & Olivares-Villagomez, D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. J. Immunol. 200, 2235–2244 (2018).

PubMed  Article  CAS  Google Scholar 

Zhou, C., Qiu, Y. & Yang, H. CD4CD8αα IELs: They Have Something to Say. Front. Immunol. 10, 2269 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mucida, D. et al. Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xing, Y., Wang, X., Jameson, S. C. & Hogquist, K. A. Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nat. Immunol. 17, 565–573 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Egawa, T. & Littman, D. R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat. Immunol. 9, 1131–1139 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Keller, H. R. et al. The molecular basis and cellular effects of distinct CD103 expression on CD4 and CD8 T cells. Cell Mol. Life Sci. 78, 5789–5805 (2021).

CAS  PubMed  Article  Google Scholar 

Luckey, M. A. et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4(+) lineage fate by inducing the SOCS suppressors of cytokine signaling. Nat. Immunol. 15, 638–645 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

He, X., Park, K. & Kappes, D. J. The role of ThPOK in control of CD4/CD8 lineage commitment. Annu. Rev. Immunol. 28, 295–320 (2010).

CAS  PubMed  Article  Google Scholar 

Muroi, S. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat. Immunol. 9, 1113–1121 (2008).

CAS  PubMed  Article  Google Scholar 

Engel, I. et al. Co-receptor choice by Vα14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. J. Exp. Med. 207, 1015–1029 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, L. et al. The sequential activity of Gata3 and Thpok is required for the differentiation of CD1d-restricted CD4+ NKT cells. Eur. J. Immunol. 40, 2385–2390 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

CAS  PubMed  Article  Google Scholar 

Wurbel, M.-A. et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol. 30, 262–271 (2000).

CAS  PubMed  Article  Google Scholar 

Houston, S. A. et al. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 9, 468–478 (2016).

CAS  PubMed  Article  Google Scholar 

Pabst, O. et al. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J. Exp. Med. 199, 411–416 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Imhof, B. A., Dunon, D., Courtois, D., Luhtala, M. & Vainio, O. Intestinal CD8αα and CD8α β intraepithelial lymphocytes are thymus derived and exhibit subtle differences in TCRβ repertoires. J. Immunol. 165, 6716–6722 (2000).

CAS  PubMed  Article  Google Scholar 

Leishman, A. J. et al. Precursors of Functional MHC Class I- or Class II-Restricted CD8αα+ T Cells Are Positively Selected in the Thymus by Agonist Self-Peptides. Immunity 16, 355–364 (2002).

CAS  PubMed  Article  Google Scholar 

Reis, B. S., Hoytema van Konijnenburg, D. P., Grivennikov, S. I. & Mucida, D. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity 41, 244–256 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

CAS 

留言 (0)

沒有登入
gif