Immunosurveillance of Candida albicans commensalism by the adaptive immune system

Gouba, N. & Drancourt, M. Digestive tract mycobiota: a source of infection. Med. et. maladies infectieuses 45, 9–16 (2015).

CAS  Article  Google Scholar 

Underhill, D. M. & Pearlman, E. Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43, 845–858 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wheeler, M. L. et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19, 865–873 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Iliev, I. D. & Leonardi, I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat. Rev. Immunol. 17, 635–646 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Revankar S. G., Sobel J. D. Mucosal Candidiasis. In: Calderone R. A., Clancy C. J. (eds.) Candida and Candidiasis, 2nd edn. ASM Press.

Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Prim. 4, 18026 (2018).

PubMed  Article  Google Scholar 

Li, X. V., Leonardi, I. & Iliev, I. D. Gut mycobiota in immunity and inflammatory disease. Immunity 50, 1365–1379 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lionakis, M. S. & Levitz, S. M. Host control of fungal infections: lessons from basic studies and human cohorts. Annu. Rev. Immunol. 36, 157–191 (2018).

CAS  PubMed  Article  Google Scholar 

Sparber, F. & LeibundGut-Landmann, S. Interleukin-17 in antifungal immunity. Pathogens 8, 54 (2019).

CAS  PubMed Central  Article  Google Scholar 

Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Millet, N., Solis, N. V. & Swidergall, M. Mucosal IgA prevents commensal candida albicans dysbiosis in the oral cavity. Front. Immunol. 11, 555363 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

CAS  PubMed  Article  Google Scholar 

Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355 e1315 (2019).

CAS  PubMed  Article  Google Scholar 

Becattini, S. et al. T cell immunity. Functional heterogeneity of human memory CD4(+) T cell clones primed by pathogens or vaccines. Science 347, 400–406 (2015).

CAS  PubMed  Article  Google Scholar 

Park, C. O. et al. Staged development of long-lived T-cell receptor alphabeta TH17 resident memory T-cell population to Candida albicans after skin infection. J. Allergy Clin. Immunol. 142, 647–662 (2018).

CAS  PubMed  Article  Google Scholar 

Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kirchner, F. R. & LeibundGut-Landmann, S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 14, 455–467 (2021).

CAS  PubMed  Article  Google Scholar 

Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013).

CAS  PubMed  Article  Google Scholar 

Schonherr, F. A. et al. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol. 10, 1335–1350 (2017).

CAS  PubMed  Article  Google Scholar 

Verma, A. H. et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2, eaam8834 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Kashem, S. W. et al. Nociceptive sensory fibers drive Interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sparber, F. et al. Langerin+ DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection. PLoS Pathog. 14, e1007069 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kashem, S. W. et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42, 356–366 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Igyarto, B. Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

CAS  PubMed  Article  Google Scholar 

Trautwein-Weidner, K. et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLoS Pathog. 11, e1005164 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

CAS  PubMed  Article  Google Scholar 

Ansaldo, E., Farley, T. K. & Belkaid, Y. Control of immunity by the microbiota. Annu. Rev. Immunol. 39, 449–479 (2021).

CAS  PubMed  Article  Google Scholar 

Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51, 77–89.e76 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Swarnalekha, N. et al. T resident helper cells promote humoral responses in the lung. Sci. Immunol. 6, eabb6808 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tamoutounour, S. et al. Keratinocyte-intrinsic MHCII expression controls microbiota-induced Th1 cell responses. Proc. Natl. Acad. Sci. USA 116, 23643–23652 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 185, 831–846 e814 (2022).

CAS  PubMed  Article  Google Scholar 

Markey, L. et al. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes 9, 497–509 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shao, T. Y. et al. Commensal Candida albicans Positively Calibrates Systemic Th17 Immunological Responses. Cell Host Microbe 25, 404–417.e406 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018).

CAS  PubMed  Article  Google Scholar 

Chen, C. et al. IL-17 is a neuromodulator of Caenorhabditis elegans sensory responses. Nature 542, 43–48 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577, 249–253 (2020).

CAS  PubMed  Article  Google Scholar 

Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif