Wide-field swept-source OCT angiography of the periarterial capillary-free zone before and after anti-VEGF therapy for branch retinal vein occlusion

Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117(2):313–9.

Article  Google Scholar 

Noma H, Funatsu H, Yamasaki M, Tsukamoto H, Mimura T, Sone T, et al. Pathogenesis of macular edema with branch retinal vein occlusion and intraocular levels of vascular endothelial growth factor and interleukin-6. Am J Ophthalmol. 2005;140(2):256–61.

CAS  Article  Google Scholar 

Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1102-12.e1.

Article  Google Scholar 

Shalchi Z, Mahroo O, Bunce C, Mitry D. Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion. Cochrane Database Syst Rev. 2020;7(7):CD009510.

PubMed  Google Scholar 

Ang JL, Ah-Moye S, Kim LN, Nguyen V, Hunt A, Barthelmes D, et al. A systematic review of real-world evidence of the management of macular oedema secondary to branch retinal vein occlusion. Eye (Lond). 2020;34(10):1770–96.

Article  Google Scholar 

Yamada R, Nishida A, Shimozono M, Kameda T, Miyamoto N, Mandai M, et al. Predictive factors for recurrence of macular edema after successful intravitreal bevacizumab therapy in branch retinal vein occlusion. Jpn J Ophthalmol. 2015;59(6):389–93.

CAS  Article  Google Scholar 

Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

Article  Google Scholar 

Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016;166:76–83.

Article  Google Scholar 

Freund KB, Sarraf D, Leong BCS, Garrity ST, Vupparaboina KK, Dansingani KK. Association of optical coherence tomography angiography of collaterals in retinal vein occlusion with major venous outflow through the deep vascular complex. JAMA Ophthalmol. 2018;136(11):1262–70.

Article  Google Scholar 

His W. Abbildungen uber des Gefaszsystem der menschlichen Netzhaut und derjenigen des Kaninchens. Arch f Anat u Entwickelungsg. 1880;5:224–31.

Google Scholar 

Michaelson I, Campbell A. The anatomy of the finer retinal vessels, and some observations on their significance in certain retinal diseases. Trans Ophthalmol Soc UK. 1940;60:71–111.

Google Scholar 

Claxton S, Fruttiger M. Role of arteries in oxygen induced vaso-obliteration. Exp Eye Res. 2003;77(3):305–11.

CAS  Article  Google Scholar 

Tang W, Guo J, Zhuang X, Zhang T, Wang L, Wang K, et al. Wide-field swept-source optical coherence tomography angiography analysis of the periarterial capillary-free zone in branch retinal vein occlusion. Transl Vis Sci Technol. 2021;10(2):9.

Article  Google Scholar 

Li H, Ding X, Lu L, Yang J, Ma J. Morphometry of the normal retinal periarteral capillary-free zone and changes during severe nonproliferative diabetic retinopathy. Clin Hemorheol Microcirc. 2019;72(2):169–78.

CAS  Article  Google Scholar 

Arthur E, Elsner AE, Sapoznik KA, Papay JA, Muller MS, Burns SA. Distances from capillaries to arterioles or venules measured using OCTA and AOSLO. Invest Ophthalmol Vis Sci. 2019;60(6):1833–44.

CAS  Article  Google Scholar 

The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 1984;98(3):271–82.

Article  Google Scholar 

Yeung L, Wu WC, Chuang LH, Wang NK, Lai CC. Novel optical coherence tomography angiography biomarker in branch retinal vein occlusion macular edema. Retina. 2019;39(10):1906–16.

Article  Google Scholar 

Ishii H, Shoji T, Yoshikawa Y, Kanno J, Ibuki H, Shinoda K. Automated measurement of the foveal avascular zone in swept-source optical coherence tomography angiography images. Transl Vis Sci Technol. 2019;8(3):28.

Article  Google Scholar 

Ishibazawa A, Mehta N, Sorour O, Braun P, Martin S, Alibha AY, et al. Accuracy and reliability in differentiating retinal arteries and veins using widefield en face OCT angiography. Transl Vis Sci Technol. 2019;8(3):60.

Article  Google Scholar 

Jeppesen SK, Bek T. Retinal oxygen saturation correlates with visual acuity but does not predict outcome after anti-VEGF treatment in central retinal vein occlusion. Invest Ophthalmol Vis Sci. 2017;58(5):2498–502.

Article  Google Scholar 

Yang JY, You B, Wang Q, Chan SY, Jonas JB, Wei WB. Retinal vessel oxygen saturation in healthy subjects and early branch retinal vein occlusion. Int J Ophthalmol. 2017;10(2):267–70.

PubMed  PubMed Central  Google Scholar 

Feng XX, Li C, Shao WW, Yuan YG, Qian XB, Zheng QS, et al. Intravitreal anti-VEGF agents, oral glucocorticoids, and laser photocoagulation combination therapy for macular edema secondary to retinal vein occlusion: preliminary report. Int J Ophthalmol. 2018;11(3):429–37.

PubMed  PubMed Central  Google Scholar 

Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276(10):7614–20.

CAS  Article  Google Scholar 

Suzuki N, Hirano Y, Tomiyasu T, Esaki Y, Uemura A, Yasukawa T, et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion. Invest Ophthalmol Vis Sci. 2016;57(13):5681–7.

Article  Google Scholar 

Mir TA, Kherani S, Hafiz G, Scott AW, Zimmer-Galler I, Wenick AS, et al. Changes in retinal nonperfusion associated with suppression of vascular endothelial growth factor in retinal vein occlusion. Ophthalmology. 2016;123(3):625-34.e1.

Article  Google Scholar 

Im JC, Shin JP, Kim IT, Park DH. Recurrence of macular edema in eyes with branch retinal vein occlusion changes the diameter of unaffected retinal vessels. Graefes Arch Clin Exp Ophthalmol. 2016;254(7):1267–74.

Article  Google Scholar 

Michelson G, Warntges S, Baleanu D, Welzenbach J, Ohno-Jinno A, Pogorelov P, et al. Morphometric age-related evaluation of small retinal vessels by scanning laser Doppler flowmetry: determination of a vessel wall index. Retina. 2007;27(4):490–8.

Article  Google Scholar 

Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol. 2000;156(5):1733–9.

CAS  Article  Google Scholar 

Noma H, Minamoto A, Funatsu H, Tsukamoto H, Nakano K, Yamashita H, et al. Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2006;244(3):309–15.

CAS  Article  Google Scholar 

Parodi M, Visintin F, Della Rupe P, Ravalico G. Foveal avascular zone in macular branch retinal vein occlusion. Int Ophthalmol. 1995;19(1):25–8.

CAS  Article  Google Scholar 

Wakabayashi T, Sato T, Hara-Ueno C, Fukushima Y, Sayanagi K, Shiraki N, et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(4):2087–94.

Article  Google Scholar 

Song S, Yu X, Zhang P, Dai H. Changes in macular microvascular structure in macular edema secondary to branch retinal vein occlusion treated with anti-vascular endothelial growth factor for one year. J Ophthalmol. 2021;2021:6645452.

PubMed  PubMed Central  Google Scholar 

Winegarner A, Wakabayashi T, Fukushima Y, Sato T, Hara-Ueno C, Busch C, et al. Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion. Invest Ophthalmol Vis Sci. 2018;59(7):2708–16.

Article  Google Scholar 

Inagaki M, Hirano Y, Yasuda Y, Kawamura M, Suzuki N, Yasukawa T, et al. Twenty-four month results of intravitreal ranibizumab for macular edema after branch retinal vein occlusion: visual outcomes and resolution of macular edema. Semin Ophthalmol. 2021;36(7):482–9.

Article  Google Scholar 

Brown DM, Campochiaro PA, Bhisitkul RB, Ho AC, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology. 2011;118(8):1594–602.

Article  Google Scholar 

Clark WL, Boyer DS, Heier JS, Brown DM, Haller JA, Vitti R, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: 52-week results of the VIBRANT study. Ophthalmology. 2016;123(2):330–6.

Article  Google Scholar 

留言 (0)

沒有登入
gif