Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform

Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004;432:829–37.

CAS  PubMed  Article  Google Scholar 

Usui T, Osada H. Biochemical tools for investigating cell function. Bioprobes. Tokyo, Japan: Springer; 2000.

Google Scholar 

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

CAS  PubMed  Article  Google Scholar 

Bérdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.

Article  Google Scholar 

Weissman KJ, Leadlay PF. Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol. 2005;3:925–36.

CAS  PubMed  Article  Google Scholar 

Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006;106:3468–96.

CAS  PubMed  Article  Google Scholar 

Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed. 2009;48:4688–716.

CAS  Article  Google Scholar 

Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep. 2009;26:1362–84.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Panthee S, Kito N, Hayashi T, Shimizu T, Ishikawa J, Hamamoto H, et al. β-carboline chemical signals induce reveromycin production through a LuxR family regulator in Streptomyces sp. SN-593. Sci Rep. 2020;10:10230.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Osada H, Koshino H, Isono K, Takahashi H, Kawanishi G. Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor. J Antibiot. 1991;44:259–61.

CAS  Article  Google Scholar 

Takahashi S, Toyoda A, Sekiyama Y, Takagi H, Nogawa T, Uramoto M, et al. Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nat Chem Biol. 2011;7:461–8.

CAS  PubMed  Article  Google Scholar 

Woo J-T, Kawatani M, Kato M, Shinki T, Yonezawa T, Kanoh N, et al. Reveromycin A an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. Proc Natl Acad Sci. 2006;103:4729–34.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Muguruma H, Yano S, Kakiuchi S, Uehara H, Kawatani M, Osada H, et al. Reveromycin A inhibits osteolytic bone metastasis of small-cell lung cancer cells, SBC-5, through an antiosteoclastic activity. Clin Cancer Res. 2005;11:8822–8.

CAS  PubMed  Article  Google Scholar 

Yano A, Tsutsumi S, Soga S, Lee MJ, Trepel J, Osada H, et al. Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci. 2008;105:15541–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Osada H. Chemical and biological studies of reveromycin A. J Antibiot. 2016;69:723–30.

CAS  Article  Google Scholar 

Takahashi S, Nagano S, Nogawa T, Kanoh N, Uramoto M, Kawatani M, et al. Structure-function analyses of cytochrome P450revI involved in reveromycin A biosynthesis and evaluation of the biological activity of its substrate reveromycin T. J Biol Chem. 2014;289:32446–58.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nogawa T, Takahashi S, Sekiyama Y, Takagi H, Uramoto M, Koshino H, et al. Creation of novel reveromycin derivatives by alcohol-added fermentation. J Antibiot. 2013;66:247–50.

CAS  Article  Google Scholar 

Miyazawa T, Takahashi S, Kawata A, Panthee S, Hayashi T, Shimizu T, et al. Identification of middle chain fatty acyl-CoA ligase responsible for the biosynthesis of 2-alkylmalonyl-CoAs for polyketide extender unit. J Biol Chem. 2015;290:26994–7011.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Panthee S, Takahashi S, Hayashi T, Shimizu T, Osada H. β-carboline biomediators induce reveromycin production in Streptomyces sp. SN-593. Sci Rep. 2019;9:5802.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Panthee S, Takahashi S, Takagi H, Nogawa T, Oowada E, Uramoto M, et al. Furaquinocins I and J: novel polyketide isoprenoid hybrid compounds from Streptomyces reveromyceticus SN-593. J Antibiot. 2011;64:509–13.

CAS  Article  Google Scholar 

Khalid A, Takagi H, Panthee S, Muroi M, Chappell J, Osada H, et al. Development of a terpenoid-production platform in Streptomyces reveromyceticus SN-593. ACS Synth Biol. 2017;6:2339–49.

CAS  PubMed  Article  Google Scholar 

Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf LK. Structure of monensic acid, a new biologically active compound. J Am Chem Soc. 1967;89:5737–9.

CAS  PubMed  Article  Google Scholar 

Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, et al. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother. 1979;15:361–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

MacKintosh C, Klumpp S. Tautomycin from the bacterium Streptomyces verticillatus. FEBS Lett. 1990;277:137–40.

CAS  PubMed  Article  Google Scholar 

Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, et al. Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989;159:871–7.

CAS  PubMed  Article  Google Scholar 

Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem J. 1988;256:283–90.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Höltzel A, Kempter C, Metzger JW, Jung G. Spirofungin, a new antifungal antibiotic from Streptomyces violaceusniger Tü 4113. J Antibiot. 1998;51:699–707.

Article  Google Scholar 

Niggemann J, Bedorf N, Flörke U, Steinmetz H, Gerth K, Reichenbach H, et al. Spirangien A and B, highly cytotoxic and antifungal spiroketals from the Myxobacterium Sorangium cellulosum: Isolation, structure elucidation and chemical modifications. Eur J Org Chem. 2005;2005:5013–8.

Article  CAS  Google Scholar 

Shimizu T, Masuda T, Hiramoto K, Nakata T. Total synthesis of reveromycin A. Org Lett. 2000;2:2153–6.

CAS  PubMed  Article  Google Scholar 

Paterson I, Findlay AD, Noti C. Total synthesis of (−)-spirangien A, an antimitotic polyketide isolated from the Myxobacterium Sorangium Cellulosum. Chem Asian J. 2009;4:594–611.

CAS  PubMed  Article  Google Scholar 

Sheppeck JE, Liu W, Chamberlin AR. Total synthesis of the serine/threonine-specific protein phosphatase inhibitor tautomycin 1. J Org Chem. 1997;62:387–98.

CAS  PubMed  Article  Google Scholar 

Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, et al. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol. 2003;49:1179–90.

CAS  PubMed  Article  Google Scholar 

Bhatt A, Stark CBW, Harvey BM, Gallimore AR, Demydchuk YA, Spencer JB, et al. Accumulation of an E,E,E-triene by the monensin-producing polyketide synthase when oxidative cyclization is blocked. Angew Chem Int Ed. 2005;44:7075–8.

CAS  Article  Google Scholar 

Gallimore AR, Stark CB, Bhatt A, Harvey BM, Demydchuk Y, Bolanos-Garcia V, et al. Evidence for the role of the monB genes in polyether ring formation during monensin biosynthesis. Chem Biol. 2006;13:453–60.

CAS  PubMed  Article  Google Scholar 

Li W, Ju J, Rajski SR, Osada H, Shen B. Characterization of the tautomycin biosynthetic gene cluster from Streptomyces spiroverticillatus unveiling new insights into dialkylmaleic anhydride and polyketide biosynthesis. J Biol Chem. 2008;283:28607–17.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ikeda H, Nonomiya T, Usami M, Ohta T, Ōmura S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci. 1999;96:9509–14.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Frank B, Knauber J, Steinmetz H, Scharfe M, Blöcker H, Beyer S, et al. Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes. Chem Biol. 2007;14:221–33.

CAS  PubMed  Article  Google Scholar 

Sun P, Zhao Q, Yu F, Zhang H, Wu Z, Wang Y, et al. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J Am Chem Soc. 2013;135:1540–8.

CAS  PubMed  Article  Google Scholar 

Guengerich FP. Cytochrome p450 enzymes in the generation of commercial products. Nat Rev Drug Disco. 2002;1:359–66.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif