Comprehensive evaluation of caloric restriction-induced changes in the metabolome profile of mice

Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25:558–66.

CAS  PubMed  PubMed Central  Google Scholar 

Weindruch R. The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol Pathol. 1996;24:742–5.

CAS  PubMed  Google Scholar 

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45.

PubMed  Google Scholar 

Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, et al. mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res. 2014;264:82–90.

CAS  PubMed  Google Scholar 

Stein PK, Soare A, Meyer TE, Cangemi R, Holloszy JO, Fontana L. Caloric restriction may reverse age-related autonomic decline in humans. Aging Cell. 2012;11:644–50.

CAS  PubMed  Google Scholar 

Saeid G, Andreas D, Bato K, et al. Health benefits of fasting and caloric restriction. Curr Diab Rep. 2017;17(12):123.

Google Scholar 

Geng CM, Guo YJ, Wang CS, et al. Comprehensive evaluation of lipopolysaccharide-induced changes in rats based on metabolomics. J Inflamm Res. 2020;24(13):477–86.

Google Scholar 

Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol. 2016;114:30.4.1-30.4.32.

Google Scholar 

Papadimitropoulos MP, Vasilopoulou CG, Christoniki MN, Klapa MI. Untargeted GC–MS metabolomics. Methods Mol Biol. 2018;1738:133–47.

CAS  PubMed  Google Scholar 

Kanani H, Chrysanthopoulos PK, Klapa MI. Standardizing GC-MS metabolomics. J Chromatogr B Anal Technol Biomed Life Sci. 2008;871(2):191–201.

CAS  Google Scholar 

Geng CM, Cui CM, Wang CS, et al. Systematic evaluations of doxorubicin-induced toxicity in rats based on metabolomics. ACS Omega. 2020;6(1):358–66.

PubMed  PubMed Central  Google Scholar 

Kohashi M, Nishiumi S, Ooi M, Yoshie T, Matsubara A, Suzuki M, et al. A novel gas chromatography mass spectrometry-based serum diagnostic and assessment approach to ulcerative colitis. J Crohns Colitis. 2014;8:1010–21.

PubMed  Google Scholar 

Caldow MK, Ham DJ, Godeassi DP, et al. Glycine supplementation during calorie restriction accelerates fat loss Q6 and protects against further muscle loss in obese mice. Clin Nutr. 2016;35(5):1118–26.

CAS  PubMed  Google Scholar 

Solon-Biet SM, McMahon AC, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19:418–30.

CAS  PubMed  PubMed Central  Google Scholar 

Sluijs I, Beulens JW, van der Daphne A, Spijkerman AM, et al. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010;33:43–8.

CAS  PubMed  Google Scholar 

Lagiou P, Sandin S, Weiderpass E, Lagiou A, et al. Low carbohydrate-high protein diet and mortality in a cohort of Swedish women. J Intern Med. 2007;261:366–74.

CAS  PubMed  Google Scholar 

Cummings NE, Lamming DW. Regulation of metabolic health and aging by nutrient-sensitive signaling pathways. Mol Cell Endocrinol. 2017;455:13–22.

CAS  PubMed  Google Scholar 

Simpson SJ, Le Couteur DG, Raubenheimer D, et al. Dietary protein, aging and nutritional geometry. Ageing Res Rev. 2017;39:78–86.

CAS  PubMed  Google Scholar 

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30.

CAS  PubMed  PubMed Central  Google Scholar 

Solon-Biet SM, Cogger VC, Pulpitel T, et al. Defining the nutritional and metabolic context of FGF21 using the geometric framework. Cell Metab. 2016;24(4):555–65.

CAS  PubMed  Google Scholar 

Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 2019;29(3):592–610.

CAS  PubMed  Google Scholar 

Harputlugil E, Hine C, Vargas D, Robertson L, et al. The TSC complex is required for the benefits of dietary protein restriction on stress resistance in vivo. Cell Rep. 2014;8(4):1160–70.

CAS  PubMed  PubMed Central  Google Scholar 

Robertson LT, Trevino-Villarreal JH, Mejia P, Grondin Y, et al. Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. J Nutr. 2015;145(8):1717–27.

CAS  PubMed  PubMed Central  Google Scholar 

Lamming DW, Cummings NE, Rastelli AL, et al. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget. 2015;6:31233–40.

PubMed  PubMed Central  Google Scholar 

Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity linked insulin resistance. Endocrinology. 2005;146:1473–81.

CAS  PubMed  Google Scholar 

Lamming DW, Anderson RM. Metabolic effects of caloric restriction. In: eLS. Wiley; 2014. https://doi.org/10.1002/9780470015902.a0021316.pub2

Villa-Cuesta E, Sage BT, Tatar M. A role for Drosophila dFoxO and dFoxO 5′UTR internal ribosomal entry sites during fasting. PLoS ONE. 2010;5(7): e11521.

PubMed  PubMed Central  Google Scholar 

Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34.

CAS  PubMed  Google Scholar 

Markova M, Pivovarova O, Hornemann S, et al. Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes. Gastroenterology. 2017;152(3):571-585.e8.

CAS  PubMed  Google Scholar 

Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32:1678–83.

CAS  PubMed  PubMed Central  Google Scholar 

Kubacka J, Cembrowska P, Sypniewska G, Stefanska A. The association between branched-chain amino acids (BCAAs) and cardiometabolic risk factors in middle-aged Caucasian women stratified according to glycemic status. Nutrients. 2021;13(10):3307.

CAS  PubMed  PubMed Central  Google Scholar 

Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J. 2013;449(1):1–10.

CAS  PubMed  Google Scholar 

Li F, Yin Y, Tan B, Kong X, Wu G. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids. 2011;41(5):1185–93.

CAS  PubMed  Google Scholar 

Moberg M, Apro W, Ohlsson I, Ponten M, et al. Absence of leucine in an essential amino acid supplement reduces activation of mTORC1 signalling following resistance exercise in young females. Appl Physiol Nutr Metab. 2014;39(2):183–94.

CAS  PubMed  Google Scholar 

Xiao F, Yu J, Guo Y, Deng J, et al. Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice. Metabolism. 2014;63(6):841–50.

CAS  PubMed  Google Scholar 

Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19(10):654–72.

CAS  PubMed  PubMed Central  Google Scholar 

Sun H, Olson KC, Gao C, et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 2016;133(21):2038–49.

CAS  PubMed  PubMed Central  Google Scholar 

Li T, Zhang Z, Kolwicz SC, et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 2017;25(2):374–85.

CAS  PubMed  PubMed Central  Google Scholar 

Wurtz P, Soininen P, Kangas AJ, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36(3):648–55.

CAS  PubMed  PubMed Central  Google Scholar 

Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

PubMed  PubMed Central  Google Scholar 

Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34.

CAS  PubMed  PubMed Central  Google Scholar 

Fontana L, Villareal DT, Das SK, Smith SR, et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell. 2016;15:22–7.

CAS  PubMed  Google Scholar 

Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA. 2004;101(17):6659–63.

CAS  PubMed  PubMed Central  Google Scholar 

Cao SX, Dhahbi JM, Mote PL, Spindler SR. Genomic profiling of short-and long-term caloric restriction effects in the liver of aging mice. Proc Natl Acad Sci USA. 2001;98:10630–5.

CAS 

留言 (0)

沒有登入
gif