The vacuolar morphology protein VAC14 plays an important role in sexual development in the filamentous ascomycete Sordaria macrospora

Andrade MA, Petosa C, O’Donoghue SI, Muller CW, Bork P (2001) Comparison of ARM and HEAT protein repeats. J Mol Biol 309:1–18. https://doi.org/10.1006/jmbi.2001.4624

CAS  Article  PubMed  Google Scholar 

Banerjee S, Kane PM (2020) Regulation of V-ATPase activity and organelle pH by phosphatidylinositol phosphate lipids. Front Cell Dev Biol 8:510. https://doi.org/10.3389/fcell.2020.00510

Article  PubMed  PubMed Central  Google Scholar 

Beier A, Teichert I, Krisp C, Wolters DA, Kück U (2016) Catalytic subunit 1 of protein phosphatase 2A is a subunit of the STRIPAK complex and governs fungal sexual development. Mbio 2:2

Google Scholar 

Bernhards Y, Pöggeler S (2011) The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 57:133–149. https://doi.org/10.1007/s00294-010-0333-z

CAS  Article  PubMed  PubMed Central  Google Scholar 

Blank-Landeshammer B, Teichert I, Märker R, Nowrousian M, Kück U, Sickmann A (2019) Combination of proteogenomics with peptide de novo sequencing identifies new genes and hidden posttranscriptional modifications. Mbio. https://doi.org/10.1128/mBio.02367-19

Article  PubMed  PubMed Central  Google Scholar 

Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Pöggeler S, Kück U (2012) A homologue of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 84:310–323. https://doi.org/10.1111/j.1365-2958.2012.08024.x

CAS  Article  PubMed  Google Scholar 

Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA, Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977

CAS  Article  PubMed  Google Scholar 

Bonangelino CJ, Catlett NL, Weisman LS (1997) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17:6847–6858. https://doi.org/10.1128/MCB.17.12.6847

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156:1015–1028. https://doi.org/10.1083/jcb.200201002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19:4273–4286. https://doi.org/10.1091/mbc.E08-04-0405

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72. https://doi.org/10.1038/nature05876

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88. https://doi.org/10.1016/j.ajhg.2008.12.010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399:221–229. https://doi.org/10.1038/20367

CAS  Article  PubMed  Google Scholar 

Cole L, Hyde G, Ashford A (1997) Uptake and compartmentalisation of fluorescent probes by Pisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis. Protoplasma 199:18–29

CAS  Article  Google Scholar 

Cole L, Orlovich DA, Ashford AE (1998) Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100. https://doi.org/10.1006/fgbi.1998.1051

CAS  Article  PubMed  Google Scholar 

Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357. https://doi.org/10.1073/pnas.0601456103

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dahlmann TA, Terfehr D, Becker K, Teichert I (2021) Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Curr Genet 67:317–330. https://doi.org/10.1007/s00294-020-01143-2

CAS  Article  PubMed  Google Scholar 

de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S, Clague MJ (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10:883–893. https://doi.org/10.1111/j.1600-0854.2009.00915.x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–192. https://doi.org/10.1038/36613

CAS  Article  PubMed  Google Scholar 

Dove SK, McEwen RK, Mayes A, Hughes DC, Beggs JD, Michell RH (2002) Vac14 controls PtdIns(3,5)P(2) synthesis and Fab1-dependent protein trafficking to the multivesicular body. Curr Biol 12:885–893. https://doi.org/10.1016/s0960-9822(02)00891-6

CAS  Article  PubMed  Google Scholar 

Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419:1–13. https://doi.org/10.1042/BJ20081950

CAS  Article  PubMed  Google Scholar 

Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006a) Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5:723–731. https://doi.org/10.1128/EC.5.4.723-731.2006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Duex JE, Tang F, Weisman LS (2006b) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172:693–704. https://doi.org/10.1083/jcb.200512105

CAS  Article  PubMed  PubMed Central  Google Scholar 

Efe JA, Botelho RJ, Emr SD (2005) The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr Opin Cell Biol 17:402–408. https://doi.org/10.1016/j.ceb.2005.06.002

CAS  Article  PubMed  Google Scholar 

Efe JA, Botelho RJ, Emr SD (2007) Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol Biol Cell 18:4232–4244. https://doi.org/10.1091/mbc.e07-04-0301

CAS  Article  PubMed  PubMed Central  Google Scholar 

Elleuche S, Pöggeler S (2009) Evolution of carbonic anhydrases in fungi. Curr Genet 55:211–222. https://doi.org/10.1007/s00294-009-0238-x

CAS  Article  PubMed  Google Scholar 

Engh I, Nowrousian M, Kück U (2007) Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett 275:62–70. https://doi.org/10.1111/j.1574-6968.2007.00867.x

CAS  Article  PubMed  Google Scholar 

Esser K, Straub J (1958) Genetic studies on Sordaria macrospora Auersw, compensation and induction in gene-dependent developmental defects. Z Vererbungsl 89:729–746

CAS  PubMed  Google Scholar 

Esser K 1982 Cryptogams: cyanobacteria, algae, fungi, lichens CUP archive

Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868–4878. https://doi.org/10.1093/hmg/ddp460

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259. https://doi.org/10.1046/j.1365-2818.2000.00708.x

CAS  Article  PubMed  Google Scholar 

Frey S, Reschka EJ, Pöggeler S (2015) Germinal center kinases SmKIN3 and SmKIN24 are associated with the Sordaria macrospora striatin-interacting phosphatase and kinase (STRIPAK) Complex. PLoS ONE 10:e0139163. https://doi.org/10.1371/journal.pone.0139163

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143:65–79. https://doi.org/10.1083/jcb.143.1.65

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251. https://doi.org/10.1091/mbc.01-10-0498

CAS  Article  PubMed  PubMed Central  Google Scholar 

Groth A, Schmitt K, Valerius O, Herzog B, Pöggeler S (2021) Analysis of the putative nucleoporin POM33 in the filamentous fungus Sordaria macrospora. J Fungi 7:682. https://doi.org/10.3390/jof7090682

CAS 

留言 (0)

沒有登入
gif