Predicting interactions of the frass-associated yeast Hyphopichia heimii with Olea europaea subsp. cuspidata and twig-boring bark beetles

Agnello AM, Combs DB, Filgueiras CC, Willett DS, Mafra-Neto A (2021) Reduced infestation by Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) in apple trees treated with host plant defense compounds. J Econ Entomol 114:2162–2171. https://doi.org/10.1093/jee/toab153

Article  PubMed  Google Scholar 

Ali SS, Al-Tohamy R, Sun J, Wu J, Huizi L (2019) Screening and construction of a novel microbial consortium SSA-6 enriched from the gut symbionts of wood-feeding termite, Coptotermes formosanus and its biomass-based biorefineries. Fuel 236:1128–1145. https://doi.org/10.1016/j.fuel.2018.08.117

CAS  Article  Google Scholar 

Anastasaki E, Psoma A, Partsinevelos G, Papachristos D, Milonas P (2021) Electrophysiological responses of Philaenus spumarius and Neophilaenus campestris females to plant volatiles. Phytochemistry 189:112848. https://doi.org/10.1016/j.phytochem.2021.112848

CAS  Article  PubMed  Google Scholar 

Arthington-Skaggs BA, Warnock DW, Morrison CJ (2000) Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility test results and in vivo outcome after fluconazole treatment in a murine model of invasive candidiasis. Antimicrob Agents Chemother 44:2081–2085. https://doi.org/10.1128/AAC.44.8.2081-2085.2000

CAS  Article  PubMed  PubMed Central  Google Scholar 

Axelsson B-O, Saraf A, Larsson L (1995) Determination of ergosterol in organic dust by gas chromatography-mass spectrometry. J Chromatogr B Biomed Appl 666:77–84. https://doi.org/10.1016/0378-4347(94)00553-h

CAS  Article  PubMed  Google Scholar 

Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210. https://doi.org/10.2307/177108

Article  Google Scholar 

Behmer ST, Nes WD (2003) Insect sterol nutrition and physiology: a global overview. Adv Insect Physiol 31:1–72. https://doi.org/10.1016/S0065-2806(03)31001-X

CAS  Article  Google Scholar 

Behmer ST, Olszewski N, Sebastiani J, Palka S, Sparacino G, Sciarrno E, Grebenok RJ (2013) Plant phloem sterol content: forms, putative functions, and implications for phloem-feeding insects. Front Plant Sci 4:1–7. https://doi.org/10.3389/fpls.2013.00370

Article  Google Scholar 

Bentz BJ, Six DL (2006) Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann Entomol Soc Am 99:189–194. https://doi.org/10.1603/0013-8746(2006)099[0189:ecofaw]2.0.co;2

CAS  Article  Google Scholar 

Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712. https://doi.org/10.1016/j.ibmb.2010.07.013

Bongi G (2002) Freezing avoidance in olive tree (Olea europaea L.): from proxies to targets of action. Adv Hort Sci 16:117–124. https://www.jstor.org/stable/42883314

Breivik ON, Owades JL (1957) Spectrophotometric semimicro determination of ergosterol in yeast. Agric Food Chem 5:360–363. https://doi.org/10.1021/jf60075a005

Callaham RZ, Shifrine M (1960) The yeasts associated with bark beetles. For Sci 6:146–154. https://doi.org/10.1093/forestscience/6.2.146

Article  Google Scholar 

Christiansen E, Ericsson A (1986) Starch reserves in Picea abies in relation to defence reaction against a bark beetle transmitted blue-stain fungus, Ceratocystis polonica. Can J for Res 16:78–83. https://doi.org/10.1139/x86-013

Article  Google Scholar 

Conde C, Delrot S, Gerós H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. J Plant Physiol 165:1545–1562. https://doi.org/10.1016/j.jplph.2008.04.018

CAS  Article  PubMed  Google Scholar 

Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634. https://doi.org/10.1007/s00248-010-9773-8

Article  PubMed  Google Scholar 

Dowd PF, Shen SK (1990) The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol Exp Appl 56:241–248. https://doi.org/10.1111/j.1570-7458.1990.tb01402.x

CAS  Article  Google Scholar 

Durand A-A, Buffet J-P, Constant P, Déziel E, Guertin C (2018) Fungal communities associated with the eastern larch beetle: diversity and variation within developmental stages. bioRxiv 220780. https://doi.org/10.1101/220780

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

CAS  Article  PubMed  PubMed Central  Google Scholar 

Endoh R, Suzuki M, Benno Y, Futai K (2008) Candida kashinagacola sp. nov., C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp. nov., three new yeasts from ambrosia beetle-associated sources. Antonie Van Leeuwenhoek 94:389–402. https://doi.org/10.1007/s10482-008-9256-9

Article  PubMed  Google Scholar 

Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371. https://doi.org/10.1099/00207713-50-3-1351

CAS  Article  PubMed  Google Scholar 

Grieneisen ML (1994) Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochem Mol Biol 24:115–132. https://doi.org/10.1016/0965-1748(94)90078-7

CAS  Article  Google Scholar 

Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649. https://doi.org/10.1111/j.1469-8137.2010.03614.x

Article  PubMed  Google Scholar 

Harrigan WF, McCance ME (1976) Statistical methods for the selection and examination of microbial colonies. In: Harrigan WF, McCance ME (eds) Laboratory methods in food and dairy microbiology. Academic Press, London, pp 47–49

Google Scholar 

Harrington T C (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega F E, Blackwell M (eds), Ecological and evolutionary advances in insect-fungal associations. Oxford University Press, 257–291

Hernández-Martínez F, Briones-Roblero CI, Nelson DR, Rivera-Orduña FN, Zúñiga G (2016) Cytochrome P450 complement (CYPome) of Candida oregonensis, a gut-associated yeast of bark beetle, Dendroctonus rhizophagus. Fungal Biol 120:1077–1089. https://doi.org/10.1016/j.funbio.2016.06.005

Hulcr J, Barnes I, De Beer ZW, Duong TA, Gazis R, Johnson AJ, Jusino MA, Kasson MT, Li Y, Lynch S, Mayers C, Musvuugwa T, Roets F, Seltmann KC, Six D, Vanderpool D, Villari C (2020) Bark beetle mycobiome: collaboratively defined research priorities on a widespread insect-fungus symbiosis. Symbiosis 81:101–113. https://doi.org/10.1007/s13199-020-00686-9

Article  Google Scholar 

Hunt DWA, Borden JH (1990) Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J Chem Ecol 16:1385–1397. https://doi.org/10.1007/BF01021034

CAS  Article  PubMed  Google Scholar 

Jordal BH (2021) A phylogenetic and taxonomic assessment of Afrotropical Micracidini (Coleoptera, Scolytinae) reveals a strong diversifying role for Madagascar. Organisms Diversity & Evolution 21:245–278. https://doi.org/10.1007/s13127-021-00481-4

Jurišić Grubešić R, Nazlić M, Miletić T, Vuko E, Vuletić N, Ljubenkov I, Dunkić V (2021) Antioxidant capacity of free volatile compounds from Olea europaea L. cv. Oblica leaves depending on the vegetation stage. Antioxidants 10(11):1832. https://doi.org/10.3390/antiox10111832

Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507. https://doi.org/10.1007/s00284-008-9276-8

CAS  Article  PubMed  Google Scholar 

Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205

Google Scholar 

Kok LT, Norris DM (1973) Comparative sterol compositions of adult female Xyleborus ferrugineus and its mutualistic fungal ectosymbionts. Comp Biochem Physiol 44:499–505. https://doi.org/10.1016/0305-0491(73)90024-2

CAS  Article  Google Scholar 

Kreutz J, Zimmermann G, Vaupel O (2004) Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Sci Technol 14:837–848. https://doi.org/10.1080/788222844

Article  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kurtzman CP (1987) Two new species of Pichia from arboreal habitats. Mycologia 79:410–417. https://doi.org/10.2307/3807464

Article  Google Scholar 

Kurtzman CP (2011a) Hyphopichia von Arx & van der Walt. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, pp 435–438

Chapter  Google Scholar 

Kurtzman CP, Fell JW, Boekhout T, Robert V (2011b) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, pp 87–110

Chapter  Google Scholar 

Lachance M-A, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8. https://doi.org/10.1016/S1567-1356(00)00003-9

CAS  Article  PubMed  Google Scholar 

Lam CK, Belanger FC, White JF Jr, Daie J (1995) Invertase activity in Epichloë/Acremonium fungal endophytes and its possible role in choke disease. Mycol Res 99:867–873. https://doi.org/10.1016/S0953-7562(09)80743-0

CAS  Article  Google Scholar 

Leufvén A, Bergström G, Falsen E (1984) Interconversion of verbenols and verbenone by identified yeasts isolated from the spruce bark beetle Ips typographus. J Chem Ecol 10:1349–1361. https://doi.org/10.1007/BF00988116

Article  PubMed  Google Scholar 

Leufvén A, Nehls L (1986) Quantification of different yeasts associated with the bark beetle, Ips typographus, during its attack on a spruce tree. Microb Ecol 12:237–243. https://www.jstor.org/stable/4250882

Limtong S, Koowadjanakul N (2012) Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 28:3323–3335. https://doi.org/10.1007/s11274-012-1144-9

CAS  Article  PubMed  Google Scholar 

Limtong S, Kaewwichian R, Yongmanitchai W, Kawasaki H (2014) Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 30:1785–1796. https://doi.org/10.1007/s11274-014-1602-7

CAS  Article  PubMed  Google Scholar 

Linardi VR, Machado KMG (1990) Production of amylases by yeasts. Can J Microbiol 36:751–753. https://doi.org/10.1139/m90-129

CAS  Article  PubMed  Google Scholar 

Martini X, Sobel L, Conover D, Mafra-Neto A, Smith J (2020) Verbenone reduces landing of the redbay ambrosia beetle, vector of the laurel wilt pathogen, on live standing redbay trees. Agric for Entomol 22:83–91. https://doi.org/10.1111/afe.12364

Article  Google Scholar 

Moller L, Kessler KD, Steyn A, Valentine AJ, Botha A (2016a) The role of Cryptococcus laurentii and mycorrhizal fungi in the nutritional physiology of Lupinus angustifolius L. hosting N2-fixing nodules. Plant Soil 409:345–360. https://doi.org/10.1007/s11104-016-2973-3

CAS  Article  Google Scholar 

Moller L, Lerm B, Botha A (2016b) Interactions of arboreal yeast endophytes: an unexplored discipline. Fungal Ecol 22:73–82. https://doi.org/10.1016/j.funeco.2016.03.003

Article  Google Scholar 

留言 (0)

沒有登入
gif