The role of NURR1 in metabolic abnormalities of Parkinson’s disease

GBD 2016 Parkinson's Disease Collaborators. Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.

Google Scholar 

Nussbaum RL, Ellis CE. Alzheimer's disease and Parkinson's disease. New Engl J Med. 2003;348:1356–64.

CAS  PubMed  Google Scholar 

Dorsey ER, Bloem BR. The Parkinson Pandemic-A Call to Action. JAMA Neurol. 2018;75:9–10.

PubMed  Google Scholar 

Warner TT, Schapira AH. Genetic and environmental factors in the cause of Parkinson's disease. Ann Neurol. 2003;53(Suppl 3):S16–23 discussion S23–15.

CAS  PubMed  Google Scholar 

Cannon JR, Greenamyre JT. Gene-environment interactions in Parkinson's disease: specific evidence in humans and mammalian models. Neurobiol Dis. 2013;57:38–46.

CAS  PubMed  Google Scholar 

Kalia LV, Lang AE. Parkinson's disease. Lancet (London, England). 2015;386:896–912.

CAS  Google Scholar 

Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dial Clin Neurosci. 2004;6:259–80.

Google Scholar 

Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39:889–909.

CAS  PubMed  Google Scholar 

Braak H, Del Tredici K. Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology. 2008;70:1916–25.

PubMed  Google Scholar 

Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. Embo J. 2015;34:1349–70.

CAS  PubMed  PubMed Central  Google Scholar 

Sindhu C, Samavarchi-Tehrani P, Meissner A. Transcription factor-mediated epigenetic reprogramming. J Biol Chem. 2012;287:30922–31.

CAS  PubMed  PubMed Central  Google Scholar 

Gurdon JB. Cell fate determination by transcription factors. Curr Top Dev Biol. 2016;116:445–54.

CAS  PubMed  Google Scholar 

Tian L, Al-Nusaif M, Chen X, Li S, Le W. Roles of transcription factors in the development and reprogramming of the dopaminergic neurons. Int J Mole Sci. 2022;23(2):845.

CAS  Google Scholar 

Neves A, Costalat R, Pellerin L. Determinants of brain cell metabolic phenotypes and energy substrate utilization unraveled with a modeling approach. PLoS Comput Biol. 2012;8:e1002686.

CAS  PubMed  PubMed Central  Google Scholar 

Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev. 2018;39:489–517.

PubMed  PubMed Central  Google Scholar 

Anandhan A, Jacome M, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis M, et al. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull. 2017;133:12–30.

CAS  PubMed  PubMed Central  Google Scholar 

Ren Y, Jiang H, Pu J, Li L, Wu J, Yan Y, et al. Molecular features of parkinson's disease in patient-derived midbrain dopaminergic neurons. Movement Disord. 2022;37:70–9.

CAS  PubMed  Google Scholar 

Xicoy H, Wieringa B, GJM M. The role of Lipids in Parkinson's disease. Cells. 2019:8.

Shao Y, Li T, Liu Z, Wang X, Xu X, Li S, et al. Comprehensive metabolic profiling of Parkinson's disease by liquid chromatography-mass spectrometry. Mole Neurodegeneration. 2021;16:4.

CAS  Google Scholar 

Alecu I, Bennett SAL. Dysregulated Lipid metabolism and its role in α-synucleinopathy in Parkinson's Disease. Front Neurosci. 2019;13:328.

PubMed  PubMed Central  Google Scholar 

Marques A, Dutheil F, Durand E, Rieu I, Mulliez A, Fantini ML, et al. Glucose dysregulation in Parkinson's disease: Too much glucose or not enough insulin? Parkinsonism Related Disord. 2018;55:122–7.

Google Scholar 

Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc National Acad Sci U.S.A. 1998;95:4013–8.

CAS  Google Scholar 

Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P. Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res. 2006;34:5515–27.

CAS  PubMed  PubMed Central  Google Scholar 

Rifes P, Isaksson M, Rathore GS, Aldrin-Kirk P, Møller OK, Barzaghi G, et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol. 2020;38:1265–73.

CAS  PubMed  Google Scholar 

Wen S, Li H, Liu J. Dynamic signaling for neural stem cell fate determination. Cell Adh Migr. 2009;3:107–17.

PubMed  PubMed Central  Google Scholar 

Hegarty SV, Sullivan AM, O'Keeffe GW. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol. 2013;379:123–38.

CAS  PubMed  Google Scholar 

Alavian KN, Jeddi S, Naghipour SI, Nabili P, Licznerski P, Tierney TS. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed. J Biomed Sci. 2014;21:27.

PubMed  PubMed Central  Google Scholar 

Zárraga-Granados G, Muciño-Hernández G, Sánchez-Carbente M, Villamizar-Gálvez W, Peñas-Rincón A, Arredondo C, et al. The nuclear receptor NR4A1 is regulated by SUMO modification to induce autophagic cell death. PloS one. 2020;15:e0222072.

PubMed  PubMed Central  Google Scholar 

Torii T, Kawarai T, Nakamura S, Kawakami H. Organization of the human orphan nuclear receptor Nurr1 gene. Gene. 1999;230:225–32.

CAS  PubMed  Google Scholar 

Hisaoka M, Ishida T, Imamura T, Hashimoto H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 2004;40:325–8.

CAS  PubMed  Google Scholar 

Kanzleiter T, Schneider T, Walter I, Bolze F, Eickhorst C, Heldmaier G, et al. Evidence for Nr4a1 as a cold-induced effector of brown fat thermogenesis. Physiol Genom. 2005;24:37–44.

CAS  Google Scholar 

Amoasii L, Sanchez-Ortiz E, Fujikawa T, Elmquist J, Bassel-Duby R, Olson E. NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci U S A. 2019;116:11299–308.

CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol. 2010;30:1535–41.

CAS  PubMed  PubMed Central  Google Scholar 

Martínez-González J, Cañes L, Alonso J, Ballester-Servera C, Rodríguez-Sinovas A, Corrales I, et al. NR4A3. 2021;22.

Safe S, Jin UH, Morpurgo B, Abudayyeh A, Singh M, Tjalkens RB. Nuclear receptor 4A (NR4A) family - orphans no more. J Steroid Biochem Mole Biol. 2016;157:48–60.

CAS  Google Scholar 

Zetterström RH, Williams R, Perlmann T, Olson L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res Mole Brain Res. 1996;41:111–20.

Google Scholar 

Li Y, Cong B, Ma C, Qi Q, Fu L, Zhang G, et al. Expression of Nurr1 during rat brain and spinal cord development. Neurosc Letters. 2011;488:49–54.

CAS  Google Scholar 

Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science (New York, NY). 1997;276:248–50.

Google Scholar 

Le W, Conneely OM, Zou L, He Y, Saucedo-Cardenas O, Jankovic J, et al. Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp Neurol. 1999;159:451–8.

CAS  PubMed  Google Scholar 

Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH. Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comparative Neurol. 2002;450:203–14.

CAS  Google Scholar 

Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157:1015–22.

Google Scholar 

Chu Y, Le W, Kompoliti K, Jankovic J, Mufson EJ, Kordower JH. Nurr1 in Parkinson's disease and related disorders. J Comparative Neurol. 2006;494:495–514.

CAS  Google Scholar 

Tehranian R, Montoya SE, Van Laar AD, Hastings TG, Perez RG. Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J Neurochem. 2006;99:1188–96.

CAS  PubMed  Google Scholar 

Baptista MJ, O'Farrell C, Daya S, Ahmad R, Miller DW, Hardy J, et al. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines. J Neurochem. 2003;85:957–68.

CAS  PubMed  Google Scholar 

Bäckman C, Perlmann T, Wallén A, Hoffer BJ, Morales M. A selective group of dopaminergic neurons express Nurr1 in the adult mouse brain. Brain Res. 1999;851:125–32.

PubMed  Google Scholar 

Eells JB, Misler JA, Nikodem VM. Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res Bull. 2006;70:186–95.

CAS  PubMed  Google Scholar 

Chen XX, Qian Y, Wang XP, Tang ZW, Xu JT, Lin H, et al. Nurr1 promotes neurogenesis of dopaminergic neuron and represses inflammatory factors in the transwell coculture system of neural stem cells and microglia. CNS Neurosci Therapeut. 2018;24:790–800.

CAS  Google Scholar 

Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci. 2009;29:15923–32.

CAS 

留言 (0)

沒有登入
gif