Two-dimensional diamonds from sp2-to-sp3 phase transitions

Burchfield, L. A., Al Fahim, M., Wittman, R. S., Delodovici, F. & Manini, N. Novamene: a new class of carbon allotropes. Heliyon 3, e00242 (2017).

Google Scholar 

Ram, B. & Mizuseki, H. C568: a new two-dimensional sp2–sp3 hybridized allotrope of carbon. Carbon 158, 827–835 (2020).

CAS  Google Scholar 

Zhang, S. et al. Penta-graphene: a new carbon allotrope. Proc. Natl Acad. Sci. USA 112, 2372–2377 (2015).

CAS  Google Scholar 

Rong, J. et al. Planar metallic carbon allotrope from graphene-like nanoribbons. Carbon 135, 21–28 (2018).

CAS  Google Scholar 

Xu, Y., Lu, Y., Zhu, X. & Wang, M. TE-C36 carbon: a new semiconducting phase with an all-sp3 bonding network. RSC Adv. 8, 1846–1851 (2018).

CAS  Google Scholar 

Hu, J. et al. Nano carbon black-based high performance wearable pressure sensors. Nanomaterials 10, 664 (2020).

CAS  Google Scholar 

Liu, J., Cui, L. & Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9, 9243–9257 (2013).

CAS  Google Scholar 

Afsahi, S. et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 100, 85–88 (2018).

CAS  Google Scholar 

Thebo, K. H. et al. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018).

Google Scholar 

Xu, Y. et al. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014).

CAS  Google Scholar 

Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

CAS  Google Scholar 

Bundy, F. P. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

CAS  Google Scholar 

Chernozatonskii, L. A., Sorokin, P. B., Kvashnin, A. G. & Kvashnin, D. G. Diamond-like C2H nanolayer, diamane: simulation of the structure and properties. JETP Lett. 90, 134–138 (2009). This is the first study to theoretically propose a single-layer diamond structure.

CAS  Google Scholar 

Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

CAS  Google Scholar 

Sumiya, H., Yusa, H., Inoue, T., Ofuji, H. & Irifune, T. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Press. Res. 26, 63–69 (2006).

CAS  Google Scholar 

Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

CAS  Google Scholar 

Erohin, S. V., Ruan, Q., Sorokin, P. B. & Yakobson, B. I. Nano-thermodynamics of chemically induced graphene–diamond transformation. Small 16, 2004782 (2020).

CAS  Google Scholar 

Rajasekaran, S., Abild-Pedersen, F., Ogasawara, H., Nilsson, A. & Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 111, 085503 (2013).

Google Scholar 

Kvashnin, A. G., Avramov, P. V., Kvashnin, D. G., Chernozatonskii, L. A. & Sorokin, P. B. Features of electronic, mechanical, and electromechanical properties of fluorinated diamond films of nanometer thickness. J. Phys. Chem. C 121, 28484–28489 (2017).

CAS  Google Scholar 

Shul’zhenko, A. A., Jaworska, L., Sokolov, A. N., Gargin, V. G. & Belyavina, N. N. Phase transformations of n-layer graphenes into diamond at high pressures and temperatures. J. Superhard Mater. 39, 75–82 (2017).

Google Scholar 

Gao, Y. et al. Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2018). This is the first work to experimentally demonstrate an ultrahard diamond-like phase obtained by applying pressure to two-layer epitaxial graphene.

CAS  Google Scholar 

Paul, S., Momeni, K. & Levitas, V. I. Shear-induced diamondization of multilayer graphene structures: a computational study. Carbon 167, 140–147 (2020).

CAS  Google Scholar 

Niraula, P. R., Cao, T. & Bongiorno, A. Mechanical properties of sp3-bonded carbon and boron nitride 2D membranes: a first principles study. Comput. Mater. Sci. 179, 109635 (2020).

CAS  Google Scholar 

Luo, Z. et al. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 3, 1781–1788 (2009).

CAS  Google Scholar 

Kvashnin, A. G., Chernozatonskii, L. A., Yakobson, B. I. & Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 14, 676–681 (2014).

CAS  Google Scholar 

Bakharev, P. V. et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 15, 59–66 (2020). This work describes the first TEM measurement of chemically induced fluorinated single-layer diamond from CVD graphene.

CAS  Google Scholar 

Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

CAS  Google Scholar 

Horbatenko, Y. et al. Synergetic interplay between pressure and surface chemistry for the conversion of sp2-bonded carbon layers into sp3-bonded carbon films. Carbon 106, 158–163 (2016).

CAS  Google Scholar 

Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).

Google Scholar 

Zhou, J. et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9, 3867–3870 (2009).

CAS  Google Scholar 

Barboza, A. P. M. et al. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 23, 3014 (2011). This work describes the pressure-induced formation of an insulating phase associated with diamane from exfoliated two-layer graphene.

CAS  Google Scholar 

Martins, L. G. P. et al. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 8, 96 (2017).

Google Scholar 

Piazza, F., Monthioux, M., Puech, P. & Gerber, I. C. Towards a better understanding of the structure of diamanoïds and diamanoïd/graphene hybrids. Carbon 156, 234–241 (2020).

CAS  Google Scholar 

Cellini, F., Lavini, F., Berger, C., de Heer, W. & Riedo, E. Layer dependence of graphene–diamene phase transition in epitaxial and exfoliated few-layer graphene using machine learning. 2D Mater. 6, 035043 (2019).

CAS  Google Scholar 

Leenaerts, O., Peelaers, H., Hernández-Nieves, A. D., Partoens, B. & Peeters, F. M. First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010).

Google Scholar 

Geng, P. & Branicio, P. S. Atomistic insights on the pressure-induced multi-layer graphene to diamond-like structure transformation. Carbon 175, 243–253 (2021).

CAS  Google Scholar 

Li, J., Li, H., Wang, Z. & Zou, G. Structure, magnetic, and electronic properties of hydrogenated two-dimensional diamond films. Appl. Phys. Lett. 102, 073114 (2013).

Google Scholar 

Leenaerts, O., Partoens, B. & Peeters, F. M. Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Phys. Rev. B 80, 245422 (2009).

Google Scholar 

Sivek, J., Leenaerts, O., Partoens, B. & Peeters, F. M. First-principles investigation of bilayer fluorographene. J. Phys. Chem. C 116, 19240–19245 (2012).

CAS  Google Scholar 

Ke, F. et al. Large bandgap of pressurized trilayer graphene. Proc. Natl Acad. Sci. USA 116, 9186–9190 (2019).

CAS  Google Scholar 

Lu, S. et al. High pressure transformation of graphene nanoplates: a Raman study. Chem. Phys. Lett. 585, 101–106 (2013).

CAS  Google Scholar 

Rysaeva, L. K., Lisovenko, D. S., Gorodtsov, V. A. & Baimova, J. A. Stability, elastic properties and deformation behavior of graphene-based diamond-like phases. Comput. Mater. Sci. 172, 109355 (2020).

CAS  Google Scholar 

Wu, Y.-C., Shao, J.-L., Zheng, Z. & Zhan, H. Mechanical properties of a single-layer diamane under tension and bending. J. Phys. Chem. C 125, 915–922 (2021).

CAS  Google Scholar 

Chernozatonskii, L. A. et al. Influence of size effect on the electronic and elastic properties of diamond films with nanometer thickness. J. Phys. Chem. C 115, 132–136 (2010).

Google Scholar 

Chernozatonskii, L. A., Mavrin, B. N. & Sorokin, P. B. Determination of ultrathin diamond films by Raman spectroscopy. Phys. Status Solidi 249, 1550–1554 (2012).

CAS  Google Scholar 

Chernozatonskii, L. A., Katin, K. P., Demin, V. A. & Maslov, M. M. Moiré diamanes based on the hydrogenated or fluorinated twisted bigraphene: the features of atomic and electronic structures, Raman and infrared spectra. Appl. Surf. Sci. 537, 148011 (2021).

CAS  Google Scholar 

Wang, L., Zhang, R., Shi, J. & Cai, K. Vibration behavior of diamondene nano-ribbon passivated by hydrogen. Sci. Rep. 9, 15783 (2019).

Google Scholar 

Shi, J., Cai, K. & Xie, Y. M. Thermal and tensile properties of diamondene at finite temperature: a molecular dynamics study. Mater. Des. 156, 125–134 (2018).

CAS  Google Scholar 

Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

CAS  Google Scholar 

Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

CAS  Google Scholar 

Choe, D.-H., Sung, H.-J. & Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 93, 125109 (2016).

Google Scholar 

Cellini, F. et al. Pressure-induced formation and mechanical properties of 2D diamond boron nitride. Adv. Sci. 8, 2002541 (2020).

Google Scholar 

Kürkçü, C. & Yamçıçıer, Ç. Structural, electronic, elastic and vibrational properties of two dimensional graphene-like BN under high pressure. Solid State Commun. 303304, 113740 (2019).

Google Scholar 

Dong, J. et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys. Rev. Lett. 124, 065701 (2020).

CAS  Google Scholar 

Khaliullin, R. Z., Eshet, H., Kuhne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011).

CAS  Google Scholar 

Scandolo, S., Bernasconi, M., Chiarotti, G. L., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995).

CAS  Google Scholar 

Xie, H., Yin, F., Yu, T., Wang, J. T. & Liang, C. Mechanism for direct graphite-to-diamond phase transition. Sci. Rep. 4, 5930 (2014).

CAS  Google Scholar 

Hanfland, M., Beister, H. & Syassen, K. Graphite under pressure: equation of state and first-order Raman modes. Phys. Rev. B 39, 12598–12603 (1989).

CAS  Google Scholar 

Yagi, T., Utsumi, W., Yamakata, M.-A., Kikegawa, T. & Shimomura, O. High-pressure in situ X-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature. Phys. Rev. B 46, 6031–6039 (1992).

CAS 

留言 (0)

沒有登入
gif