Semi-Quantitative Versus Visual Analysis of Adenosine Perfusion Magnetic Resonance Imaging in Intermediate-Grade Coronary Artery Stenosis Using Fractional Flow Reserve as the Reference: A Pilot Study

Tu S, Barbato E, Koszegi Z, et al. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: A fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv. 2014; 7(7): 768–77. DOI: https://doi.org/10.1016/j.jcin.2014.03.004 

Ghekiere O, Dewilde W, Bellekens M, et al. Diagnostic performance of quantitative coronary computed tomography angiography and quantitative coronary angiography to predict hemodynamic significance of intermediate-grade stenoses. Int J Cardiovasc Imaging. 2015; 31(8): 1651–61. DOI: https://doi.org/10.1007/s10554-015-0748-1 

Groothuis JG, Beek AM, Brinckman SL, et al. Combined non-invasive functional and anatomical diagnostic work-up in clinical practice: The magnetic resonance and computed tomography in suspected coronary artery disease (MARCC) study. Eur Heart J. 2013; 34(26): 1990–8. DOI: https://doi.org/10.1093/eurheartj/eht077 

Tobis J, Azarbal B, Slavin L. Assessment of intermediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol. 2007; 49(8): 839–48. DOI: https://doi.org/10.1016/j.jacc.2006.10.055 

Nam CW, Yoon HJ, Cho YK, et al. Outcomes of percutaneous coronary intervention in intermediate coronary artery disease: Fractional flow reserve-guided versus intravascular ultrasound-guided. JACC Cardiovasc Interv. 2010; 3(8): 812–7. DOI: https://doi.org/10.1016/j.jcin.2010.04.016 

Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009; 360(3): 213–24. DOI: https://doi.org/10.1056/NEJMoa0807611 

Zhang D, Lv S, Song X, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention: A meta-analysis. Heart. 2015; 101(6): 455–62. DOI: https://doi.org/10.1136/heartjnl-2014-306578 

Li C, Xu R, Yao K, et al. Functional significance of intermediate coronary stenosis in patients with single-vessel coronary artery disease: A comparison of dynamic SPECT coronary flow reserve with intracoronary pressure-derived fractional flow reserve (FFR). J Nucl Cardiol; 2020. DOI: https://doi.org/10.1007/s12350-020-02293-z 

Forster S, Rieber J, Ubleis C, et al. Tc-99m sestamibi single photon emission computed tomography for guiding percutaneous coronary intervention in patients with multivessel disease: A comparison with quantitative coronary angiography and fractional flow reserve. Int J Cardiovasc Imaging. 2010; 26(2): 203–13. DOI: https://doi.org/10.1007/s10554-009-9510-x 

Danad I, Szymonifka J, Twisk JWR, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: A meta-analysis. Eur Heart J. 2017; 38(13): 991–8. DOI: https://doi.org/10.1093/eurheartj/ehw095 

De Bruyne B, Baudhuin T, Melin JA, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994; 89(3): 1013–22. DOI: https://doi.org/10.1161/01.CIR.89.3.1013 

van de Hoef TP, Meuwissen M, Escaned J, et al. Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol. 2013; 10(8): 439–52. DOI: https://doi.org/10.1038/nrcardio.2013.86 

Ghekiere O, Dacher JN, Dewilde W, et al. Value of Relative Myocardial Perfusion at MRI for Fractional Flow Reserve-Defined Ischemia: A Pilot Study. AJR Am J Roentgenol. 2019; 1–8. DOI: https://doi.org/10.2214/AJR.18.20469 

Manisty C, Ripley DP, Herrey AS, et al. Splenic Switch-off: A Tool to Assess Stress Adequacy in Adenosine Perfusion Cardiac MR Imaging. Radiology. 2015; 276(3): 732–40. DOI: https://doi.org/10.1148/radiol.2015142059 

Lubbers DD, Rijlaarsdam-Hermsen D, Kuijpers D, et al. Performance of adenosine ‘stress-only’ perfusion MRI in patients without a history of myocardial infarction: A clinical outcome study. Int J Cardiovasc Imaging. 2012; 28(1): 109–15. DOI: https://doi.org/10.1007/s10554-010-9775-0 

Bettencourt N, Chiribiri A, Schuster A, et al. Cardiac magnetic resonance myocardial perfusion imaging for detection of functionally significant obstructive coronary artery disease: A prospective study. Int J Cardiol. 2013; 168(2): 765–73. DOI: https://doi.org/10.1016/j.ijcard.2012.09.231 

Watkins S, McGeoch R, Lyne J, et al. Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation. 2009; 120(22): 2207–13. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.872358 

Ebersberger U, Makowski MR, Schoepf UJ, et al. Magnetic resonance myocardial perfusion imaging at 3.0 Tesla for the identification of myocardial ischaemia: Comparison with coronary catheter angiography and fractional flow reserve measurements. Eur Heart J Cardiovasc Imaging. 2013; 14(12): 1174–80. DOI: https://doi.org/10.1093/ehjci/jet074 

Gebker R, Frick M, Jahnke C, et al. Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease. Int J Cardiovasc Imaging. 2012; 28(1): 89–97. DOI: https://doi.org/10.1007/s10554-010-9764-3 

Jung PH, Rieber J, Stork S, et al. Effect of contrast application on interpretability and diagnostic value of dobutamine stress echocardiography in patients with intermediate coronary lesions: Comparison with myocardial fractional flow reserve. Eur Heart J. 2008; 29(20): 2536–43. DOI: https://doi.org/10.1093/eurheartj/ehn204 

Rieber J, Jung P, Erhard I, et al. Comparison of pressure measurement, dobutamine contrast stress echocardiography and SPECT for the evaluation of intermediate coronary stenoses. The COMPRESS trial. Int J Cardiovasc Intervent. 2004; 6(3–4): 142–7. DOI: https://doi.org/10.1080/14628840410030504 

Hacker M, Rieber J, Schmid R, et al. Comparison of Tc-99m sestamibi SPECT with fractional flow reserve in patients with intermediate coronary artery stenoses. J Nucl Cardiol. 2005; 12(6): 645–54. DOI: https://doi.org/10.1016/j.nuclcard.2005.07.006 

Shehata ML, Basha TA, Hayeri MR, Hartung D, Teytelboym OM, Vogel-Claussen J. MR myocardial perfusion imaging: Insights on techniques, analysis, interpretation, and findings. Radiographics. 2014; 34(6): 1636–57. DOI: https://doi.org/10.1148/rg.346140074 

Coelho-Filho OR, Rickers C, Kwong RY, Jerosch-Herold M. MR myocardial perfusion imaging. Radiology. 2013; 266(3): 701–15. DOI: https://doi.org/10.1148/radiol.12110918 

Yang J, Dou G, He B, et al. Stress Myocardial Blood Flow Ratio by Dynamic CT Perfusion Identifies Hemodynamically Significant CAD. JACC Cardiovasc Imaging. 2020; 13(4): 966–76. DOI: https://doi.org/10.1016/j.jcmg.2019.06.016 

Johnson NP, Toth GG, Lai D, et al. Prognostic value of fractional flow reserve: Linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014; 64(16): 1641–54. DOI: https://doi.org/10.1016/j.jacc.2014.07.973 

Ghekiere O, Bielen J, Leipsic J, et al. Correlation of FFR-derived from CT and stress perfusion CMR with invasive FFR in intermediate-grade coronary artery stenosis. Int J Cardiovasc Imaging. 2019; 35(3): 559–68. DOI: https://doi.org/10.1007/s10554-018-1464-4 

Nagel E, Greenwood JP, McCann GP, et al. Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. N Engl J Med. 2019; 380(25): 2418–28. DOI: https://doi.org/10.1056/NEJMoa1716734 

Maron DJ, Hochman JS, Reynolds HR, et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease. N Engl J Med. 2020; 382(15): 1395–407. DOI: https://doi.org/10.1056/NEJMoa1915922 

Motwani M, Maredia N, Fairbairn TA, et al. High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging. 2012; 5(3): 306–13. DOI: https://doi.org/10.1161/CIRCIMAGING.111.971796 

Rieber J, Huber A, Erhard I, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: A comparison with coronary angiography and fractional flow reserve. Eur Heart J. 2006; 27(12): 1465–71. DOI: https://doi.org/10.1093/eurheartj/ehl039 

Motwani M, Kidambi A, Uddin A, Sourbron S, Greenwood JP, Plein S. Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle. J Cardiovasc Magn Reson. 2015; 17(1): 4. DOI: https://doi.org/10.1186/s12968-015-0107-3 

Nchimi A, Mancini I, Broussaud TK. Influence of the cardiac cycle on time-intensity curves using multislice dynamic magnetic resonance perfusion. Int J Cardiovasc Imaging. 2014; 30(7): 1347–55. DOI: https://doi.org/10.1007/s10554-014-0466-0 

留言 (0)

沒有登入
gif