Progress with RNA Interference for the Treatment of Primary Hyperoxaluria

Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol. 1998;160(5):1617–24.

CAS  Article  Google Scholar 

Burns Z, Knight J, Fargue S, et al. Future treatments for hyperoxaluria. Curr Opin Urol. 2020;30(2):171–6.

Article  Google Scholar 

Liebow A, Li X, Racie T, et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol. 2017;28:494–503.

CAS  Article  Google Scholar 

Lai C, Pursell N, Gierut J, et al. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol Ther. 2018;26(8):1983–95.

CAS  Article  Google Scholar 

Wood KD, Holmes RP, Erbe D, et al. Reduction in urinary oxalate excretion in mouse models of primary hyperoxaluria by RNA interference inhibition of liver lactate dehydrogenase activity. Biochim Biophys Acta Mol Basis Dis. 2019;1865(9):2203–9.

CAS  Article  Google Scholar 

Frishberg Y, Zeharia A, Lyakhovetsky R, Bargal R, Belostotsky R. Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria. J Med Genet. 2014;51(8):526–9. https://doi.org/10.1136/jmedgenet-2014-102529.

CAS  Article  PubMed  Google Scholar 

McGregor TL, Hunt KA, Yee E, et al. Characterising a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. Elife. 2020;9:e54363.

CAS  Article  Google Scholar 

Kanno T, Sudo K, Takeuchi I, et al. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta. 1980;108(2):267–76.

CAS  Article  Google Scholar 

Nishimura Y, Honda N, Ohyama K, et al. Lactate dehydrogenase A subunit deficiency. Isozymes Curr Top Biol Med Res. 1983;11:51–64.

CAS  PubMed  Google Scholar 

Maekawa M, Kanda S, Sudo K, et al. Estimation of the gene frequency of lactate dehydrogenase subunit deficiencies. Am J Hum Genet. 1984;36(6):1204–14.

CAS  PubMed  PubMed Central  Google Scholar 

Kanno T, Sudo K, Maekawa M, et al. Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin Chim Acta. 1988;173(1):89–98.

CAS  Article  Google Scholar 

Maekawa M, Kanno T, Sudo K. Myoglobinuria due to enzyme abnormalities in glycolytic pathway: especially lactate dehydrogenase M subunit deficiency. Rinsho Byori. 1991;39(2):124–32.

CAS  PubMed  Google Scholar 

Ariceta G, Barrios K, Brown BD, Hoppe B, Rosskamp R, Langman CB. Hepatic lactate dehydrogenase A: an RNA interference target for the treatment of all known types of primary hyperoxaluria. Kidney Int Rep. 2021;6:1088–98.

Article  Google Scholar 

Garrelfs SF, Frishberg Y, Hulton SA, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384:1216–26.

CAS  Article  Google Scholar 

Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369(7):649–58.

CAS  Article  Google Scholar 

Salido E, Pey AL, Rodriguez R, et al. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta. 2012;1822(9):1453–64.

CAS  Article  Google Scholar 

Lieske JC, Monico CG, Holmes WS, et al. International registry for primary hyperoxaluria. Am J Nephrol. 2005;25(3):290–6. https://doi.org/10.1159/000086360.

Article  PubMed  Google Scholar 

Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467–75. https://doi.org/10.1038/nrneph.2012.113.

CAS  Article  PubMed  Google Scholar 

Cochat P, Hulton SA, Acquaviva C, et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant. 2012;27(5):1729–36. https://doi.org/10.1093/ndt/gfs078.

CAS  Article  PubMed  Google Scholar 

Bergstralh EJ, Monico CG, Lieske JC, et al. Transplantation outcomes in primary hyperoxaluria. Am J Transplant. 2010;10(11):2493–501. https://doi.org/10.1111/j.1600-6143.2010.03271.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cramer SD, Ferree PM, Lin K, et al. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;11:2063–9.

Article  Google Scholar 

Monico CG, Rossetti S, Belostotsky R, et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol. 2011;6(9):2289–95.

CAS  Article  Google Scholar 

Belostotsky R, Seboun E, Idelson GH, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87:392–9.

CAS  Article  Google Scholar 

Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

CAS  Article  Google Scholar 

Hannon GJ. RNA interference. Nature. 2002;418(6894):244–51.

CAS  Article  Google Scholar 

Nair JK, Willoughby JL, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–61.

CAS  Article  Google Scholar 

Wu YT, Jiaang WT, Lin KG, et al. A new N-acetylgalactosamine containing peptide as a targeting vehicle for mammalian hepatocytes via asialoglycoprotein receptor endocytosis. Curr Drug Deliv. 2004;1(2):119–27.

CAS  Article  Google Scholar 

Bobbin ML, Rossi JJ. RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol. 2016;56:103–22. https://doi.org/10.1146/annurev-pharmtox-010715-103633.

CAS  Article  PubMed  Google Scholar 

Scott LJ, Keam SJ. Lumasiran: first approval. Drugs. 2021;81:277–82.

CAS  Article  Google Scholar 

Frishberg Y, Deschênes G, Groothoff JW, et al. Phase 1/2 study of lumasiran for treatment of primary hyperoxaluria type 1: a placebo-controlled randomized clinical trial. Clin J Am Soc Nephrol. 2021;16:1025–36.

CAS  Article  Google Scholar 

Sas DJ, Magen D, Hayes W, et al. Phase 3 trial of lumasiran for primary hyperoxaluria type 1: a new RNAi therapeutic in infants and young children. Genet Med. 2022;24(3):654–62.

Article  Google Scholar 

Dicerna Pharmaceuticals, Inc. Dicerna reports positive top-line results from PHYOX™2 pivotal clinical trial of nedosiran for the treatment of primary hyperoxaluria. 2021. https://investors.dicerna.com/news-releases/news-release-details/dicerna-reports-positive-top-line-results-phyoxtm2-pivotal. Accessed 15 Mar 2022.

Hoppe B, Koch A, Cochat P, et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHOX1) in primary hyperoxaluria. Kidney Int. 2022;101(3):626–34.

CAS  Article  Google Scholar 

Dicerna Pharmaceuticals, Inc. Dicerna announces results for PHYOX™4, single-dose study of nedosiran in primary hyperoxaluria type 3 (PH3). 2021. https://www.businesswire.com/news/home/20211019005355/en/. Accessed 15 Mar 2022.

Hulton SA, Groothoff JW, Frishberg Y, et al. Randomized clinical Trial on the long-term efficacy and safety of lumasiran in patients with primary hyperoxaluria type 1. Kidney Int Rep. 2021;7(3):494–506. https://doi.org/10.1016/j.ekir.2021.12.001.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif