Effects of blood flow restriction (BFR) with resistance exercise on musculoskeletal health in older adults: a narrative review

Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65(2):252–6. https://doi.org/10.1161/HYPERTENSIONAHA.114.03617.

CAS  Article  PubMed  Google Scholar 

Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J Neurol Sci. 1988;84(2):275–94. https://doi.org/10.1016/0022-510X(88)90132-3.

CAS  Article  PubMed  Google Scholar 

Metter EJ, Conwit R, Tobin J, Fozard JL. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol Ser A Biol Med Sci. 1997;52(5):B267–76. https://doi.org/10.1093/gerona/52A.5.B267.

CAS  Article  Google Scholar 

Arai H. Aging and homeostasis. Prevention and treatment of sarcopenia and frailty. Clinical calcium. 2017;27(7):1007–11 CliCa170710071011.

CAS  PubMed  Google Scholar 

Marques A, Queirós C. Frailty, sarcopenia and falls. In: Fragility Fracture Nursing: Springer; 2018. p. 15–26.

Book  Google Scholar 

Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86–99. https://doi.org/10.1002/jcsm.12783.

Article  PubMed  Google Scholar 

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.

Article  PubMed  Google Scholar 

Chen L-K, Liu L-K, Woo J, Assantachai P, Auyeung T-W, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025.

Article  PubMed  Google Scholar 

Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5. https://doi.org/10.1111/j.1532-5415.2004.52014.x.

Article  PubMed  Google Scholar 

Yang J. Enhanced skeletal muscle for effective glucose homeostasis. Prog Mol Biol Transl Sci. 2014;121:133–63. https://doi.org/10.1016/B978-0-12-800101-1.00005-3.

CAS  Article  PubMed  Google Scholar 

Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23(6):1034–47. https://doi.org/10.1016/j.cmet.2016.05.007.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Willoughby D, Medicine ACoS: resistance training and the older adult. ACSM Current Comment. In.; 2015.

Google Scholar 

Lambert CP, Evans WJ. Adaptations to aerobic and resistance exercise in the elderly. Rev Endocr Metab Disord. 2005;6(2):137–43. https://doi.org/10.1007/s11154-005-6726-5.

Article  PubMed  Google Scholar 

Guizelini PC, de Aguiar RA, Denadai BS, Caputo F, Greco CC. Effect of resistance training on muscle strength and rate of force development in healthy older adults: a systematic review and meta-analysis. Exp Gerontol. 2018;102:51–8. https://doi.org/10.1016/j.exger.2017.11.020.

Article  PubMed  Google Scholar 

Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol. 2007;92(5):783–97. https://doi.org/10.1113/expphysiol.2006.036525.

CAS  Article  PubMed  Google Scholar 

Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 2007;103(5):1744–51. https://doi.org/10.1152/japplphysiol.00679.2007.

CAS  Article  PubMed  Google Scholar 

Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):71–7. https://doi.org/10.1152/japplphysiol.00307.2012.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129–38. https://doi.org/10.1152/japplphysiol.00154.2016.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435–45. https://doi.org/10.1249/mss.0b013e3180616aa2.

Article  PubMed  Google Scholar 

Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1(1):11. https://doi.org/10.1186/2044-5040-1-11.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Guillet C, Prod’homme M, Balage M, Gachon P, Giraudet C, Morin L, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 2004;18(13):1586–7. https://doi.org/10.1096/fj.03-1341fje.

CAS  Article  PubMed  Google Scholar 

Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S, Gundermann DM, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol. 2015;65:1–7. https://doi.org/10.1016/j.exger.2015.02.015.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Joseph GA, Wang SX, Jacobs CE, Zhou W, Kimble GC, Herman WT, et al. Partial inhibition of mTORC1 in aged rats counteracts the decline in muscle mass and reverses molecular signaling associated with sarcopenia. Mol Cell Biol. 2019;39(19):e00141–19. https://doi.org/10.1128/MCB.00141-19.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway a negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem. 2001;276(41):38052–60. https://doi.org/10.1074/jbc.M106703200.

CAS  Article  PubMed  Google Scholar 

Kumar V, Atherton PJ, Selby A, Rankin D, Williams J, Smith K, et al. Muscle protein synthetic responses to exercise: effects of age, volume, and intensity. J Gerontol A Biomed Sci Med Sci. 2012;67(11):1170–7. https://doi.org/10.1093/gerona/gls141.

CAS  Article  Google Scholar 

Stutts WC. Physical activity determinants in adults: perceived benefits, barriers, and self efficacy. AAOHN J. 2002;50(11):499–507. https://doi.org/10.1177/216507990205001106.

Article  PubMed  Google Scholar 

Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903–10. https://doi.org/10.1152/japplphysiol.00195.2007.

CAS  Article  PubMed  Google Scholar 

Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol. 2010;108(5):1199–209. https://doi.org/10.1152/japplphysiol.01266.2009.

CAS  Article  PubMed  PubMed Central  Google Scholar 

de Souza TMF, Libardi CA, Cavaglieri CR, Gáspari AF, Brunelli DT, de Souza GV, et al. Concurrent training with blood flow restriction does not decrease inflammatory markers. Int J Sports Med. 2018;40(01):29–36. https://doi.org/10.1055/s-0043-119222.

Article  Google Scholar 

Karabulut M, Abe T, Sato Y, Bemben MG. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol. 2010;108(1):147–55. https://doi.org/10.1007/s00421-009-1204-5.

Article  PubMed  Google Scholar 

Libardi C, Chacon-Mikahil M, Cavaglieri C, Tricoli V, Roschel H, Vechin F, et al. Effect of concurrent training with blood flow restriction in the elderly. Int J Sports Med. 2015;36(05):395–9. https://doi.org/10.1055/s-0034-1390496.

CAS  Article  PubMed  Google Scholar 

Sedghi SS. Effect of combined aerobic and resistance training with blood flow restriction in the elderly women. Sport Sci Pract Asp. 2017;14(1).

Sato Y. The history and future of KAATSU training. Int J KAATSU Train Res. 2005;1(1):1–5. https://doi.org/10.3806/ijktr.1.1.

Article  Google Scholar 

Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035–9. https://doi.org/10.1097/00005768-200012000-00011.

CAS  Article  PubMed  Google Scholar 

Kubota A, Sakuraba K, Koh S, Ogura Y, Tamura Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport. 2011;14(2):95–9. https://doi.org/10.1016/j.jsams.2010.08.007.

Article  PubMed  Google Scholar 

Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008;40(3):529–34. https://doi.org/10.1249/MSS.0b013e31815ddac6.

Article  PubMed  Google Scholar 

Barbalho M, Rocha AC, Seus TL, Raiol R, Del Vecchio FB, Coswig VS. Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial. Clin Rehabil. 2019;33(2):233–40. https://doi.org/10.1177/0269215518801440.

Article  PubMed  Google Scholar 

Patterson SD, Leggate M, Nimmo MA, Ferguson RA. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. 2013;113(3):713–9. https://doi.org/10.1007/s00421-012-2479-5.

CAS  Article 

留言 (0)

沒有登入
gif