Gut Factors Mediating the Physiological Impact of Bariatric Surgery

Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009; 122:248–256 e5. https://doi.org/10.1016/j.amjmed.2008.09.041

Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012;366:1567–76. https://doi.org/10.1056/NEJMoa1200225

Welbourn R, Hollyman M, Kinsman R, Dixon J, Liem R, Ottosson J, et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the Fourth IFSO Global Registry Report 2018. Obes Surg Obes Surg. 2019;29:782–95. https://doi.org/10.1007/S11695-018-3593-1.

Article  PubMed  Google Scholar 

Sandoval DA. Mechanisms for the metabolic success of bariatric surgery. J Neuroendocr. 2019; 31:e12708. https://doi.org/10.1111/jne.12708

Li J, Lai D, Wu D. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy to treat morbid obesity-related comorbidities: a systematic review and meta-analysis. Obes Surg Springer; 2016. p. 429–42. Doi: https://doi.org/10.1007/s11695-015-1996-9

Shoar S, Saber AA. Long-term and midterm outcomes of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass: a systematic review and meta-analysis of comparative studies. Surg Obes Relat Dis Elsevier. 2017;13:170–80. https://doi.org/10.1016/j.soard.2016.08.011.

Article  Google Scholar 

Peterli R, Wolnerhanssen BK, Peters T, Vetter D, Kroll D, Borbely Y, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic roux-en-y gastric bypass onweight loss in patients with morbid obesity the sm-boss randomized clinical trial. JAMA - J Am Med Assoc. 2018;319:255–65. https://doi.org/10.1001/jama.2017.20897

Mahawar KK, Sharples AJ. Contribution of malabsorption to weight loss after Roux-en-Y Gastric Bypass: a systematic review. Obes. Surg. Springer New York LLC; 2017. p. 2194–206. https://doi.org/10.1007/s11695-017-2762-y

Evers SS, Sandoval DA, Seeley RJ. The physiology and molecular underpinnings of the effects of bariatric surgery on obesity and diabetes. Annu Rev Physiol Annu Rev Physiol. 2017;79:313–34. https://doi.org/10.1146/annurev-physiol-022516-034423.

CAS  Article  PubMed  Google Scholar 

Stefater MA, Perez-Tilve D, Chambers AP, Wilson-Perez HE, Sandoval DA, Berger J, et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology. 2010;138:2426–36, 2436 e1–3. https://doi.org/10.1053/j.gastro.2010.02.059

Wilson-Perez HE, Chambers AP, Sandoval DA, Stefater MA, Woods SC, Benoit SC, et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int J Obes. 2013; 37:288–95. https://doi.org/10.1038/ijo.2012.18

Grayson BE, Schneider KM, Woods SC, Seeley RJ. Improved rodent maternal metabolism but reduced intrauterine growth after vertical sleeve gastrectomy. Sci Transl Med. 2013;5. https://doi.org/10.1126/scitranslmed.3006505

Ahlman H, Nilsson O. The gut as the largest endocrine organ in the body. Ann Oncol. Elsevier; 2001;12.

Sjölund K, Sandén G, Håkanson R, Sundler F. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology. 1983;85:1120–30.

Article  Google Scholar 

Egerod KL, Engelstoft MS, Grunddal KV, Nøhr MK, Secher A, Sakata I, et al. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology. 2012;153:5782–95. https://doi.org/10.1210/en.2012-1595.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grunddal KV, Ratner CF, Svendsen B, Sommer F, Engelstoft MS, Madsen AN, et al. Neurotensin is coexpressed, coreleased, and acts together with GLP-1 and PYY in enteroendocrine control of metabolism. Endocrinology. 2016;157:176–94. https://doi.org/10.1210/en.2015-1600.

CAS  Article  PubMed  Google Scholar 

Sykaras AG, Demenis C, Cheng L, Pisitkun T, McLaughlin JT, Fenton RA, et al. Duodenal CCK cells from male mice express multiple hormones including ghrelin. Endocrinol (United States). 2014;155:3339–51. https://doi.org/10.1210/en.2013-2165.

CAS  Article  Google Scholar 

Fothergill LJ, Callaghan B, Hunne B, Bravo DM, Furness JB. Costorage of enteroendocrine hormones evaluated at the cell and subcellular levels in male mice. Endocrinology Oxford Academic. 2017;158:2113–23. https://doi.org/10.1210/en.2017-00243.

CAS  Article  Google Scholar 

Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun Nature Publishing Group; 2021. p. 1–12. https://doi.org/10.1038/s41467-021-21235-y

Furness JB. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 2012. p. 286–94. https://doi.org/10.1038/nrgastro.2012.32

Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity. 2017. p. 910–26. https://doi.org/10.1016/j.immuni.2017.05.011

Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96. https://doi.org/10.1016/S0165-1838(00)00127-2.

CAS  Article  PubMed  Google Scholar 

Powley TL. Vagal input to the enteric nervous system. Gut Gut; 2000. https://doi.org/10.1136/gut.47.suppl_4.iv30

Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, Eraslan G, et al. The human and mouse enteric nervous system at single-cell resolution cell. Cell Press; 2020;182:1606–1622.e23. https://doi.org/10.1016/J.CELL.2020.08.003

Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell Cell. 2018;174:999-1014.e22. https://doi.org/10.1016/j.cell.2018.06.021.

CAS  Article  PubMed  Google Scholar 

Wang YB, de Lartigue G, Page AJ. Dissecting the role of subtypes of gastrointestinal vagal afferents. Front Physiol Front; 2020. p. 643. https://doi.org/10.3389/fphys.2020.00643

Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Aut Neurosci. 2000;85:1–17. https://doi.org/10.1016/S1566-0702(00)00215-0

Berthoud HR, Blackshaw LA, Brookes SJH, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil. John Wiley & Sons, Ltd; 2004. p. 28–33. https://doi.org/10.1111/j.1743-3150.2004.00471.x

Peris-Sampedro F, Le May M V., Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol J Neuroendocrinol; 2021. https://doi.org/10.1111/jne.13025

Ayala JE, Bracy DP, James FD, Burmeister MA, Wasserman DH, Drucker DJ. Glucagon-like peptide-1 receptor knockout mice are protected from high-fat diet-induced insulin resistance. Endocrinology The Endocrine Society. 2010;151:4678–87. https://doi.org/10.1210/en.2010-0289.

CAS  Article  Google Scholar 

Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia Diabetologia. 2006;49:1360–70. https://doi.org/10.1007/s00125-006-0237-0.

CAS  Article  PubMed  Google Scholar 

Moran TH, Katz LF, Plata-Salaman CR, Schwartz GJ. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol - Regul Integr Comp Physiol Am J Physiol; 1998;274. https://doi.org/10.1152/ajpregu.1998.274.3.r618

Donovan MJ, Paulino G, Raybould HE. CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet. Physiol Behav Physiol Behav. 2007;92:969–74. https://doi.org/10.1016/J.PHYSBEH.2007.07.003.

CAS  Article  PubMed  Google Scholar 

Guida C, Stephen SD, Watson M, Dempster N, Larraufie P, Marjot T, et al. PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine. Elsevier; 2019;40. https://doi.org/10.1016/J.EBIOM.2018.12.040

Le Roux CW, Batterham RL, Aylwin SJB, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology Endocrinology. 2006;147:3–8. https://doi.org/10.1210/en.2005-0972.

CAS  Article  PubMed  Google Scholar 

Verdich C, Toubro S, Buemann B, Lysgård Madsen J, Juul Holst J, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety - Effect of obesity and weight reduction. Int J Obes Nature Publishing Group. 2001;25:1206–14. https://doi.org/10.1038/sj.ijo.0801655.

CAS  Article  Google Scholar 

Knop FK, Aaboe K, Vilsbøll T, Vølund A, Holst JJ, Krarup T, et al. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes, Obes Metab. Diabetes Obes Metab; 2012;14:500–10. https://doi.org/10.1111/j.1463-1326.2011.01549.x

Vilsbøll T, Krarup T, Sonne J, Madsbad S, Vølund A, Juul AG, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. J Clin Endocrinol Metab; 2003;88:2706–13. https://doi.org/10.1210/jc.2002-021873

Covasa M, Grahn J, Ritter RC. High fat maintenance diet attenuates hindbrain neuronal response to CCK. Regul Pept. 2000;86:83–8. https://doi.org/10.1016/s0167-0115(99)00084-1

Page AJ, Kentish SJ. Plasticity of gastrointestinal vagal afferent satiety signals. Neurogastroenterol. Motil. Neurogastroenterol Motil; 2017. https://doi.org/10.1111/nmo.12973

Sewaybricker LE, Schur EA. Is Bariatric Surgery Brain Surgery? Diabetes American Diabetes Association. 2021;70:1244–6. https://doi.org/10.2337/DBI21-0022.

CAS  Article  Google Scholar 

Almby KE, Lundqvist MH, Abrahamsson N, Kvernby S, Fahlström M, Pereira MJ, et al. Effects of gastric bypass surgery on the brain: simultaneous assessment of glucose uptake, blood flow, neural activity, and cognitive function during normo- and hypoglycemia. Diabetes American Diabetes Association. 2021;70:1265–77. https://doi.org/10.2337/DB20-1172.

CAS  Article  Google Scholar 

Zimmerman CA, Knight ZA. Layers of signals that regulate appetite. Curr Opin Neurobiol Curr Opin Neurobiol. 2020;64:79–88. https://doi.org/10.1016/j.conb.2020.03.007.

CAS  Article  PubMed  Google Scholar 

Moura-Assis A, Friedman JM, Velloso LA. Gut-to-brain signals in feeding control. Am J Physiol - Endocrinol Metab, 2021 p. E326–32. https://doi.org/10.1152/AJPENDO.00388.2020

Kim KS, Seeley RJ, Sandoval DA. Signalling from the periphery to the brain that regulates energy homeostasis. Nat Rev Neurosci Nat Rev Neurosci; 2018. p. 185–96. https://doi.org/10.1038/nrn.2018.8

Bobbioni-Harsch E, Huber O, Morel P, Chassot G, Lehmann T, Volery M, et al. Factors influencing energy intake and body weight loss after gastric bypass. Eur J Clin Nutr. 2002;56:551–6. https://doi.org/10.1038/sj.ejcn.1601357

Dias MC, Ribeiro AG, Scabim VM, Faintuch J, Zilberstein B, Gama-Rodrigues JJ. Dietary intake of female bariatric patients after anti-obesity gastroplasty. Clin (Sao Paulo). 2006;61:93–8. https://doi.org/10.1590/s1807-59322006000200002

Warde-Kamar J, Rogers M, Flancbaum L, Laferrere B. Calorie intake and meal patterns up to 4 years after Roux-en-Y gastric bypass surgery. Obes Surg. 2004;14:1070–9. https://doi.org/10.1381/0960892041975668

Moize V, Geliebter A, Gluck ME, Yahav E, Lorence M, Colarusso T, et al. Obese patients have inadequate protein intake related to protein intolerance up to 1 year following Roux-en-Y gastric bypass. Obes Surg. 2003;13:23–8. Doi: https://doi.org/10.1381/096089203321136548

Trostler N, Mann A, Zilberbush N, Charuzi II, Avinoach E. Nutrient intake following vertical banded gastroplasty or gastric bypass. Obes Surg. 1995; 5:403–10. https://doi.org/10.1381/096089295765557502

Naslund I, Jarnmark I, Andersson H. Dietary intake before and after gastric bypass and gastroplasty for morbid obesity in women. Int J Obes. 1988;12:503–13.

Brolin RE, Robertson LB, Kenler HA, Cody RP. Weight loss and dietary intake after vertical banded gastroplasty and Roux-en-Y gastric bypass. Ann Surg. 1994;220:782–90. https://doi.org/10.1097/00000658-199412000-00012

Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL, et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2009; 297:R1273–82. https://doi.org/10.1152/ajpregu.00343.2009

Ullrich J, Ernst B, Wilms B, Thurnheer M, Schultes B. Roux-en y gastric bypass surgery reduces hedonic hunger and improves dietary habits in severely obese subjects. Obes Surg Obes Surg. 2013;23:50–5. https://doi.org/10.1007/s11695-012-0754-5.

Article  PubMed  Google Scholar 

Sista F, Abruzzese V, Clementi M, Guadagni S, Montana L, Carandina S. Resolution of type 2 diabetes after sleeve gastrectomy: a 2-step hypothesis. Surg Obes Relat Dis. Surg Obes Relat Dis; 2018;14:284–90. https://doi.org/10.1016/j.soard.2017.12.009

Braghetto I, Lanzarini E, Korn O, Valladares H, Molina JC, Henriquez A. Manometric changes of the lower esophageal sphincter after sleeve gastrectomy in obese patients. Obes Surg Obes Surg. 2010;20:357–62. https://doi.org/10.1007/s11695-009-0040-3.

Article  PubMed  Google Scholar 

Chambers AP, Smith EP, Begg DP, Grayson BE, Sisley S, Greer T, et al. Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. Am J Physiol Endocrinol Metab. 2014; 306:E424–32. https://doi.org/10.1152/ajpendo.00469.2013

Chambers AP, Sorrell JE, Haller A, Roelofs K, Hutch CR, Kim KS, et al. The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab. Cell Press; 2017;25:927–934 e3. https://doi.org/10.1016/j.cmet.2017.02.008

Svane MS, Bojsen-Møller KN, Martinussen C, Dirksen C, Madsen JL, Reitelseder S, et al. Postprandial nutrient handling and gastrointestinal hormone secretion after roux-en-y gastric bypass vs sleeve gastrectomy. Gastroenterology. Elsevier; 2019;156.

Dirksen C, Bojsen-Møller KN, Jørgensen NB, Jacobsen SH, Kristiansen VB, Naver LS, et al. Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass. Diabetologia Diabetologia. 2013;56:2679–87. https://doi.org/10.1007/s00125-013-3055-1.

CAS  Article  PubMed  Google Scholar 

Le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252:50–6. https://doi.org/10.1097/SLA.0b013e3181d3d21f.

Article  PubMed  Google Scholar 

Kulkarni B V., Lasance K, Sorrell JE, Lemen L, Woods SC, Seeley RJ, et al. The role of proximal versus distal stomach resection in the weight loss seen after vertical sleeve gastrectomy. Am J Physiol - Regul Integr Comp Physiol. Am J Physiol Regul Integr Comp Physiol; 2016;311:R979–87. https://doi.org/10.1152/ajpregu.00125.2016

Tessier R, Ribeiro-Parenti L, Bruneau O, Khodorova N, Cavin J-B, Bado A, et al. Effect of different bariatric surgeries on dietary protein bioavailability in rats. American Physiological Society Bethesda, MD ; 2019;317:G592–601. https://doi.org/10.1152/AJPGI.00142.2019

Stefater MA, Sandoval DA, Chambers AP, Wilsonpérez HE, Hofmann SM, Jandacek R, et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology. W.B. Saunders; 2011;141:939–949.e4. https://doi.org/10.1053/J.GASTRO.2011.05.008

Ding L, Zhang E, Yang Q, Jin L, Sousa KM, Dong B, et al. Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice. Proc Natl Acad Sci. National Academy of Sciences; 2021;118:e2019388118. https://doi.org/10.1073/pnas.2019388118

Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L, et al. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity Obesity (Silver Spring). 2006;14:1553–61. https://doi.org/10.1038/oby.2006.179.

CAS  Article  Google Scholar 

Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR. Meal-induced hormone responses in a rat model of roux-en-Y gastric bypass surgery. Endocrinology Endocrinology. 2010;151:1588–97. https://doi.org/10.1210/en.2009-1332.

CAS  Article  PubMed  Google Scholar 

Yousseif A, Emmanuel J, Karra E, Millet Q, Elkalaawy M, Jenkinson AD, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg Obes Surg. 2014;24:241–52. https://doi.org/10.1007/s11695-013-1066-0.

Article  PubMed  Google Scholar 

Nannipieri M, Baldi S, Mari A, Colligiani D, Guarino D, Camastra S, et al. Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J Clin Endocrinol Metab. J Clin Endocrinol Metab; 2013;98:4391–9. https://doi.org/10.1210/jc.2013-2538

Jacobsen SH, Olesen SC, Dirksen C, Jørgensen NB, Bojsen-Møller KN, Kielgast U, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg Springer. 2012;22:1084–96. https://doi.org/10.1007/s11695-012-0621-4.

留言 (0)

沒有登入
gif