Bodyweight, locomotion, and behavioral responses of the naked mole rat (Heterocephalus glaber) to lipopolysaccharide administration

Andziak B, O’Connor TP, Qi W et al (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5:463–471. https://doi.org/10.1111/j.1474-9726.2006.00237.x

CAS  Article  PubMed  Google Scholar 

Bassi GS, Kanashiro A, Santin FM et al (2012) Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic Clin Pharmacol Toxicol 110:359–369. https://doi.org/10.1111/j.1742-7843.2011.00824.x

CAS  Article  PubMed  Google Scholar 

Beutler B (2002) TLR4 as the mammalian endotoxin sensor, 270th edn. Springer, Berlin, pp 109–120. https://doi.org/10.1007/978-3-642-59430-4_7

Book  Google Scholar 

Bhattacharyya S, Wang W, Tamaki Z et al (2018) Pharmacological inhibition of toll-like receptor-4 signaling by TAK242 prevents and induces regression of experimental organ fibrosis. Front Immunol 9:2434. https://doi.org/10.3389/fimmu.2018.02434

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bourke A (1991) The biology of the naked mole-rat. Trends Ecol Evol 6:171–172. https://doi.org/10.1016/0169-5347(91)90064-5

Article  Google Scholar 

Bret-Dibat JL, Bluthe RM, Kent S et al (1995) Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav Immun 9:242–246. https://doi.org/10.1006/brbi.1995.1023

CAS  Article  PubMed  Google Scholar 

Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked mole-rat: Insights from a successfully aging species. J Comp Physiol B 178:439–445. https://doi.org/10.1007/s00360-007-0237-5

Article  PubMed  Google Scholar 

Catorce MN, Gevorkian G (2020) Evaluation of anti-inflammatory nutraceuticals in lps-induced mouse neuroinflammation model: an update. Curr Neuropharmacol 18:636–654. https://doi.org/10.2174/1570159x18666200114125628

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cheng J, Yuan Z, Yang W et al (2017) Comparative study of macrophages in naked mole rats and ICR mice. Oncotarget 8:96924–96934. https://doi.org/10.18632/oncotarget.19661

Article  PubMed  PubMed Central  Google Scholar 

Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. https://doi.org/10.1038/nature01322

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dantzer R (2018) Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev 98:477–504. https://doi.org/10.1152/physrev.00039.2016

CAS  Article  PubMed  Google Scholar 

Engeland CG, Nielsen DV, Kavaliers M, Ossenkopp KP (2001) Locomotor activity changes following lipopolysaccharide treatment in mice: A multivariate assessment of behavioral tolerance. Physiol Behav 72:481–491. https://doi.org/10.1016/S0031-9384(00)00436-4

CAS  Article  PubMed  Google Scholar 

Felger JC, Miller AH (2012) Cytokine effects on the basal ganglia and dopamine function: The subcortical source of inflammatory malaise. Front Neuroendocrinol 33:315–327. https://doi.org/10.1016/j.yfrne.2012.09.003

CAS  Article  PubMed  PubMed Central  Google Scholar 

Felger JC, Treadway MT (2017) Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology 42:216–241. https://doi.org/10.1038/npp.2016.143

CAS  Article  PubMed  Google Scholar 

Fellner A, Barhum Y, Angel A et al (2017) Toll-Like receptor-4 inhibitor TAK-242 attenuates motor dysfunction and spinal cord pathology in an amyotrophic lateral sclerosis mouse model. Int J Mol Sci. https://doi.org/10.3390/IJMS18081666

Article  PubMed  PubMed Central  Google Scholar 

Fenhammar J, Rundgren M, Forestier J et al (2011) Toll-like receptor 4 inhibitor TAK-242 attenuates acute kidney injury in endotoxemic sheep. Anesthesiology 114:1130–1137. https://doi.org/10.1097/ALN.0b013e31820b8b44

CAS  Article  PubMed  Google Scholar 

Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522. https://doi.org/10.1038/s41569-018-0064-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gaykema RPA, Dijkstra I, Tilders FJH (1995) Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and acth secretion. Endocrinology 136:4717–4720. https://doi.org/10.1210/endo.136.10.7664696

CAS  Article  PubMed  Google Scholar 

Goehler LE, Gaykema RPA, Nguyen KT et al (1999) Interleukin-1β in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci 19:2799–2806. https://doi.org/10.1523/jneurosci.19-07-02799.1999

CAS  Article  PubMed  PubMed Central  Google Scholar 

Harrison NA, Cercignani M, Voon V, Critchley HD (2015) Effects of inflammation on hippocampus and substantia nigra responses to novelty in healthy human participants. Neuropsychopharmacology 40:831–838. https://doi.org/10.1038/npp.2014.222

Article  PubMed  Google Scholar 

Hilton HG, Rubinstein ND, Janki P et al (2019) Single-cell transcriptomics of the naked molerat reveals unexpected features of mammalian immunity. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000528

Article  PubMed  PubMed Central  Google Scholar 

Ii M, Matsunaga N, Hazeki K et al (2006) A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol 69:1288–1295. https://doi.org/10.1124/mol.105.019695

CAS  Article  PubMed  Google Scholar 

Jarvis JUM (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science (80-) 212:571–573. https://doi.org/10.1126/science.7209555

CAS  Article  Google Scholar 

Kawamoto T, Ii M, Kitazaki T et al (2008) TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol 584:40–48. https://doi.org/10.1016/j.ejphar.2008.01.026

CAS  Article  PubMed  Google Scholar 

Kim KK, Jin SH, Lee BJ (2013) Herpes virus entry mediator signaling in the brain is imperative in acute inflammation-induced anorexia and body weight loss. Endocrinol Metab 28:214. https://doi.org/10.3803/enm.2013.28.3.214

Article  Google Scholar 

Kinoshita D, Cohn DWH, Costa-Pinto FA, de Sá-Rocha LC (2009) Behavioral effects of LPS in adult, middle-aged and aged mice. Physiol Behav 96:328–332. https://doi.org/10.1016/j.physbeh.2008.10.018

CAS  Article  PubMed  Google Scholar 

Kisipan ML, Ojoo RO, Kanui TI, Abelson KSP (2020) Imiquimod does not elicit inflammatory responses in the skin of the naked mole rat (Heterocephalus glaber). BMC Res Notes. https://doi.org/10.1186/s13104-020-05260-6

Article  PubMed  PubMed Central  Google Scholar 

Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour: Mechanisms and implications. Trends Neurosci 25:154–159. https://doi.org/10.1016/S0166-2236(00)02088-9

CAS  Article  PubMed  Google Scholar 

Kurz S, Thieme R, Amberg R et al (2017) The anti-tumorigenic activity of A2M—a lesson from the naked mole-rat. PLoS ONE 12:e0189514. https://doi.org/10.1371/journal.pone.0189514

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kuzmich N, Sivak K, Chubarev V et al (2017) TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines 5:34. https://doi.org/10.3390/vaccines5040034

CAS  Article  PubMed Central  Google Scholar 

Lacey EA, Alexander RD, Braude SH et al (2017) An ethogram for the naked mole-rat: Nonvocal behaviors. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 209–242

Chapter  Google Scholar 

Lainiola M, Linden AM, Aitta-aho T (2020) Behavioral responses of mGluR3-KO mice to the lipopolysaccharide-induced innate inflammatory reaction. Pharmacol Biochem Behav. https://doi.org/10.1016/j.pbb.2020.172852

Article  PubMed  Google Scholar 

Larson J, Park TJ (2009) Extreme hypoxia tolerance of naked mole-rat brain. NeuroReport 20:1634–1637. https://doi.org/10.1097/WNR.0b013e32833370cf

Article  PubMed  Google Scholar 

Lasselin J, Schedlowski M, Karshikoff B et al (2020) Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev 115:15–24. https://doi.org/10.1016/j.neubiorev.2020.05.001

CAS  Article  PubMed  Google Scholar 

Lawrence CB, Brough D, Knight EM (2012) Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide. Dis Model Mech 5:649–659. https://doi.org/10.1242/dmm.009068

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liang S, Mele J, Wu Y et al (2010) Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9:626–635. https://doi.org/10.1111/j.1474-9726.2010.00588.x

CAS  Article  PubMed  Google Scholar 

Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151. https://doi.org/10.1016/j.cyto.2008.01.006

CAS  Article  PubMed  Google Scholar 

Matsunaga N, Tsuchimori N, Matsumoto T, Ii M (2011) TAK-242 (Resatorvid), a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 79:34–41. https://doi.org/10.1124/mol.110.068064

CAS  Article 

留言 (0)

沒有登入
gif