ROR2 promotes epithelial-mesenchymal transition by hyperactivating ERK in melanoma

Alonso SR, Tracey L, Ortiz P et al (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 67:3450–3460. https://doi.org/10.1158/0008-5472.CAN-06-3481

CAS  Article  PubMed  Google Scholar 

Barbero G, Castro MV, Villanueva MB et al (2019) An autocrine Wnt5a loop promotes NF-κB pathway activation and cytokine/chemokine secretion in melanoma. Cells 8:1060. https://doi.org/10.3390/cells8091060

CAS  Article  PubMed Central  Google Scholar 

Bland T, Wang J, Yin L et al (2021) WLS-Wnt signaling promotes neuroendocrine prostate cancer. Iscience 24:101970. https://doi.org/10.1016/j.isci.2020.101970

CAS  Article  PubMed  PubMed Central  Google Scholar 

Campos LS, Rodriguez YI, Leopoldino AM et al (2016) Filamin a expression negatively regulates sphingosine-1-phosphate-induced NF-κB activation in melanoma cells by inhibition of Akt signaling. Mol Cell Biol 36:320–329. https://doi.org/10.1128/MCB.00554-15

CAS  Article  PubMed  PubMed Central  Google Scholar 

Caramel J, Papadogeorgakis E, Hill L et al (2013) A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24:466–480. https://doi.org/10.1016/j.ccr.2013.08.018

CAS  Article  PubMed  Google Scholar 

Castro MV, Barbero GA, Villanueva MB et al (2021) ROR2 has a protective role in melanoma by inhibiting Akt activity, cell-cycle progression, and proliferation. J Biomed Sci 28:76. https://doi.org/10.1186/s12929-021-00776-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Castro MV, Barbero GA, Máscolo P et al (2022) ROR2 increases the chemoresistance of melanoma by regulating p53 and Bcl2-family proteins via ERK hyperactivation. Cell Mol Biol Lett 27:23. https://doi.org/10.1186/s11658-022-00327-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Castro MV, Lopez-Bergami P (2022) and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 170:103595. https://doi.org/10.1016/j.critrevonc.2022.103595

Debebe Z, Rathmell WK (2015) Ror2 as a therapeutic target in cancer. Pharmacol Ther 150:143–148. https://doi.org/10.1016/j.pharmthera.2015.01.010

CAS  Article  PubMed  Google Scholar 

DeMorrow S, Francis H, Gaudio E et al (2008) The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway. Am J Physiol Gastrointest Liver Physiol 295:G1150-1158. https://doi.org/10.1152/ajpgi.90455.2008

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fernández NB, Lorenzo D, Picco ME et al (2016) ROR1 contributes to melanoma cell growth and migration by regulating N-cadherin expression via the PI3K/Akt pathway: ROR1 increases melanoma cell growth and migration. Mol Carcinog 55:1772–1785. https://doi.org/10.1002/mc.22426

CAS  Article  PubMed  Google Scholar 

Ford CE, Qian Ma SS, Quadir A, Ward RL (2013) The dual role of the novel Wnt receptor tyrosine kinase, ROR2, in human carcinogenesis. Int J Cancer 133:779–787. https://doi.org/10.1002/ijc.27984

CAS  Article  PubMed  Google Scholar 

Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. https://doi.org/10.1093/bioinformatics/btz931

CAS  Article  PubMed  Google Scholar 

Gobeil S, Boucher CC, Nadeau D, Poirier GG (2001) Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 8:588–594. https://doi.org/10.1038/sj.cdd.4400851

CAS  Article  PubMed  Google Scholar 

Henry C, Quadir A, Hawkins NJ et al (2015) Expression of the novel Wnt receptor ROR2 is increased in breast cancer and may regulate both β-catenin dependent and independent Wnt signalling. J Cancer Res Clin Oncol 141:243–254. https://doi.org/10.1007/s00432-014-1824-y

CAS  Article  PubMed  Google Scholar 

Henry CE, Llamosas E, Daniels B et al (2018) ROR1 and ROR2 play distinct and opposing roles in endometrial cancer. Gynecol Oncol 148:576–584. https://doi.org/10.1016/j.ygyno.2018.01.025

CAS  Article  PubMed  Google Scholar 

Hong A, Moriceau G, Sun L et al (2018) Exploiting drug addiction mechanisms to select against MAPKi-resistant melanoma. Cancer Discov 8:74–93. https://doi.org/10.1158/2159-8290.CD-17-0682

CAS  Article  PubMed  Google Scholar 

Isomura H, Taguchi A, Kajino T et al (2021) Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci 112:1614–1623. https://doi.org/10.1111/cas.14825

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kahlert UD, Joseph JV, Kruyt FAE (2017) EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 11:860–877. https://doi.org/10.1002/1878-0261.12085

Article  PubMed  PubMed Central  Google Scholar 

Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. https://doi.org/10.1172/JCI39104

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kang E, Seo J, Yoon H, Cho S (2021) The post-translational regulation of epithelial-mesenchymal transition-inducing transcription factors in cancer metastasis. Int J Mol Sci 22:3591. https://doi.org/10.3390/ijms22073591

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim CH, Jeon HM, Lee SY et al (2011) Implication of snail in metabolic stress-induced necrosis. PLoS ONE 6:e18000. https://doi.org/10.1371/journal.pone.0018000

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kong X, Kuilman T, Shahrabi A et al (2017) Cancer drug addiction is relayed by an ERK2-dependent phenotype switch. Nature 550:270–274. https://doi.org/10.1038/nature24037

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lai S-S, Xue B, Yang Y et al (2012) ROR2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE. Cancer Genet 205:552–562. https://doi.org/10.1016/j.cancergen.2012.09.002

CAS  Article  PubMed  Google Scholar 

Lara E, Calvanese V, Huidobro C et al (2010) Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer. Mol Cancer 9:170. https://doi.org/10.1186/1476-4598-9-170

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee SE, Lim SD, Kang SY et al (2013) Prognostic significance of ROR2 and Wnt5a expression in medulloblastoma. Brain Pathol 23:445–453. https://doi.org/10.1111/bpa.12017

Article  PubMed  PubMed Central  Google Scholar 

Lee SY, Ju MK, Jeon HM et al (2018) Regulation of tumor progression by programmed necrosis. Oxid Med Cell Longev 2018:1–28. https://doi.org/10.1155/2018/3537471

CAS  Article  Google Scholar 

Leung GP, Feng T, Sigoillot FD et al (2019) Hyperactivation of MAPK signaling is deleterious to RAS/RAF-mutant melanoma. Mol Cancer Res 17:199–211. https://doi.org/10.1158/1541-7786.MCR-18-0327

CAS  Article  PubMed  Google Scholar 

Li L, Ying J, Tong X et al (2014) Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting β-catenin and AKT signaling but frequently methylated in common carcinomas. Cell Mol Life Sci 71:2179–2192. https://doi.org/10.1007/s00018-013-1485-z

CAS  Article  PubMed  Google Scholar 

Liu ZG, Jiao D (2020) Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 4(1):1–8. https://doi.org/10.15698/cst2020.01.208

CAS  Article  Google Scholar 

Lopez-Bergami P, Fitchman B, Ronai Z (2008) Understanding signaling cascades in melanoma. Photochem Photobiol 84:289–306. https://doi.org/10.1111/j.1751-1097.2007.00254.x

CAS  Article  PubMed  Google Scholar 

Lyons SM, Alizadeh E, Mannheimer J et al (2016) Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas. Biol Open 5:289–299. https://doi.org/10.1242/bio.013409

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ma SSQ, Srivastava S, Llamosas E et al (2016) ROR2 is epigenetically inactivated in the early stages of colorectal neoplasia and is associated with proliferation and migration. BMC Cancer 16:508. https://doi.org/10.1186/s12885-016-2576-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Marshall KD, Edwards MA, Krenz M et al (2014) Proteomic mapping of proteins released during necrosis and apoptosis from cultured neonatal cardiac myocytes. Am J Physiol Cell Physiol 306:C639-647. https://doi.org/10.1152/ajpcell.00167.2013

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nishita M, Yoo SK, Nomachi A et al (2006) Filopodia formation mediated by receptor tyrosine kinase ROR2 is required for Wnt5a-induced cell migration. J Cell Biol 175:555–562. https://doi.org/10.1083/jcb.200607127

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nsengimana J, Laye J, Filia A et al (2018) β-Catenin-mediated immune evasion pathway frequently operates in primary cutaneous melanomas. J Clin Invest 128:2048–2063. https://doi.org/10.1172/JCI95351

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif