An electronic health record (EHR) phenotype algorithm to identify patients with attention deficit hyperactivity disorders (ADHD) and psychiatric comorbidities

Algorithm development

The rule-based phenotyping algorithm was developed using data from the CAG pediatric biorepository database at CHOP (Fig. 1). We extracted subjects genotyped on a genome-wide chip and with phenotype data available from 2006 to 2019. Recruitment was not targeted; the biorepository broadly reflects the incidence rates for pediatric disease in the USA, albeit enriched for several rare and specialty cohorts [17,18,19].

Fig. 1figure 1

Concept overview of ADHD with comorbidities algorithm. Details for cases and controls are outlined in methods and supplementary tables      

The algorithm for detecting psychiatric phenotypes draws information from multiple sources within the EHR (Epic, Verona, WI) to provide a thorough picture of the patient’s medical record. The EHR includes emergency department, inpatient and outpatient visits, date of visits, reason for visits, admission details, diagnosis codes (ICD-9/ICD-10-CM format), growth measurements, medications prescribed, imaging, laboratory test results, patient problem list, and referrals made. This information is captured and moved into the repository in a structured format. The algorithm was constructed using information from CAG internal and external published or publicly available psychiatric disorder algorithms [11,12,13, 20,21,22,23].

Inclusion criteria for ADHD cases

ADHD cases were defined by the presence of ICD9 codes beginning with “314.,” or ICD10 codes beginning with “F90.,” or prescriptions for ADHD-specific medications in the subject’s EHR. To account for the various possible issues in diagnosing ADHD, we required more than one ADHD “hit” at different visits for inclusion. At minimum, the patient must have the following: (1) two separate diagnosis days; (2) two separate ADHD medication prescription days; (3) one diagnosis day and one ADHD medication day on separate calendar days. Later, we added to the algorithm; (4) one prescription and one result from an abstracted note; or (5) one diagnosis code and one result from an abstracted note. All cases had a diagnosis of ADHD at 4 years or greater, keeping with the American Academy of Pediatrics Clinical Practice Guidelines for ADHD [3].

Keywords were selected to search for ADHD phenotypes (Additional file 1: Table S1). An ADHD medication list was sourced from the eMERGE ADHD algorithm [20], and edited to include medications most likely prescribed to pediatric patients utilizing the online professional version of the Merck Manual, a section on ADHD in Children and Adolescents [24]. We also searched for keywords indicating participation in neurocognitive therapy or psychotherapy.

Free-text notes from a subset of patient charts were reviewed and abstracted by an independent clinical staff member (DA) and analyzed. Abstractions were searched using the ADHD or comorbidity keywords and medications used in the structured search. These results were added to the ADHD and each comorbidity algorithm as further criteria adjustments

Inclusion criteria for comorbid psychiatric cases

The CAG database was searched for subjects with one or more of nine psychiatric diagnoses: anxiety, autism, major depression, oppositional defiant disorder (ODD), conduct disorder (CD), tic disorders, Tourette syndrome, schizophrenia, and/or bipolar disorder. Subjects with mild/moderate intellectual disability (ID) and learning disabilities (LD) were also included. Algorithms for each condition were created and modified from previously published or publicly available algorithms (see Additional file 1: Tables S2-S12). Generally, each condition was designated at least twice by an IDC9/ICD 10 code on at least two separate visit days. For anxiety, treatment medications designated at least twice or in conjunction with an ICD9/ICD10 code and two separate visit days were used as inclusion criteria; benzodiazepines were not included as they are often prescribed in children for pre- and post-procedural anxiety. The same rule is applied for schizophrenia and bipolar disorder medications. Medication selection was guided by the Mental Health Disorders in Children and Adolescents chapter of the online professional version of the Merck Manual [25] and medications lists sourced from eMERGE algorithms [20]. Like ADHD, we later added to each algorithm: one prescription and one result from an abstracted note or one diagnosis code and one result from an abstracted note. Subjects that were cases of both ADHD and one or more psychiatric disorders were considered comorbid ADHD cases.

Case exclusions

Because several psychiatric disorders were considered, we used general case exclusion criteria for all subjects. A range of exclusionary diagnoses is listed in Additional file 1: Table S13. These primarily include diagnoses consistent with neuronal damage, neoplasms, infectious diseases affecting the brain, and/or severe and profound intellectual disability, where attention and behavioral problems may be evident but likely to be etiologically distinct. We excluded drugs classified under “cardiovascular agents” or “analgesics” in the EHR to account for drugs, such as clonidine, used to treat non-psychiatric indications. Subjects not meeting the minimal inclusion criteria for ADHD or each of the comorbid psychiatric or related conditions were excluded from the case pool.

Controls

The control inclusion factor was defined as subjects 8 years old or older. This was to avoid patients with a possible ADHD diagnosis, as the DSM-IV criteria for ADHD age of onset were before 7 years old [26]. Control exclusions specify (1) the medical record excludes any prescriptions for psychiatric, neurological, or related disorders and/or (2) a range of ICD9/ICD10 codes addressing comorbid disorders presenting with psychiatric conditions and any mention of psychiatric disorders (Additional file 1: Table S14). In addition, chromosomal anomalies, genetic syndromes, and other syndromes excluded subjects as controls. Learning disabilities and mild/moderate intellectual disability were not excluded.

Validation

To establish a gold standard for PPV calculations, we conducted an independent electronic medical record review for random cases that were pulled out by the algorithms to confirm they were “true” cases. The PPVs were calculated for ADHD and psychiatric disorder cases and controls. A random sampling of controls was selected for validation of exclusion criteria. For ADHD validation, we chose subjects extracted by the algorithm but not found in the abstraction list nor verified in the chart abstraction. A random sampling of cases for each psychiatric disorder was chosen for validation. The number of cases with abstraction information available was 4032, and the number of abstractions completed was 741.

ADHD confidence scoring

Each ADHD subject was given a high, moderate, or low confidence score. The scoring system was based on the source and number of sources indicating an ADHD diagnosis or medication. Subjects received “points” for the number of unique diagnosis or medication days, whether an ADHD phenotype or medication was in the psychological abstraction, and whether the participant had psychotherapy or neurocognitive therapy. The score was not an indicator of disease severity; for example, a high-confidence subject with a high number of diagnoses and prescription days could be a patient with longstanding mild ADHD, stable on their current medication regimen. The score is calculated by the sum of (1) number of unique diagnosis days, (2) number of unique ADHD medication days, (3) whether an ADHD phenotype was located in psych abstraction (0 = absent, 1 = present), (4) whether an ADHD medication was located in psych abstraction (0 = absent, 1 = present), and (5) whether a subject was noted to have psychotherapy or neurocognitive therapy (0 = absent, 1 = present). The number of sources can be from 1 to 5 based on the categories above. High confidence is defined as (1) total score of ≥ 20, (2) total score > 9 and number of sources 4–5, or (3) number of diagnosis days > 9 or number of ADHD medications > 9 and number of sources 2–3. Moderate confidence is defined as (1) subjects not defined in high or low confidence. Low confidence is defined as (1) number of diagnosis days + number of ADHD medications = 2 and total score < 3 or (2) number of diagnosis days = 0 and total score < 10 and number of ADHD medications > 2 and no abstraction sources.

留言 (0)

沒有登入
gif