Hydrophilic retention mechanism of imidazoline and serotonin receptor ligands in thin-layer and high-performance liquid chromatography systems

Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247. https://doi.org/10.1007/s00216-011-5308-5

CAS  Article  PubMed  Google Scholar 

Linden JC, Lawhead CL (1975) Liquid chromatography of saccharides. J Chromatogr 105:125–133. https://doi.org/10.1016/S0021-9673(01)81096-7

CAS  Article  Google Scholar 

Rabel FM, Caputo AG, Butts ET (1976) Separation of carbohydrates on a new polar bonded phase material. J Chromatogr 126:731–740. https://doi.org/10.1016/S0021-9673(01)84116-9

CAS  Article  Google Scholar 

Boersema PJ, Mohammed S, Heck AJR (2008) Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal Bioanal Chem 391:1865–1867. https://doi.org/10.1007/s00216-008-1865-7

CAS  Article  Google Scholar 

Hsieh Y (2008) Potential of HILIC–MS in quantitative bioanalysis of drugs and drug metabolites. J Sep Sci 31:1481–1491. https://doi.org/10.1002/jssc.200700451

CAS  Article  PubMed  Google Scholar 

Rehman SU, Kim IS, Choi MS, Luo Z, Yao G, Xue Y, Zhang Y, Yoo HH (2016) Development of a hydrophilic and interaction liquid chromatography–tandem mass spectrometric method for the determination of kinsenoside, an antihyperlipidemic candidate, in rat plasma and its application to pharmacokinetic studies. J Pharm Biomed Anal 120:19–24. https://doi.org/10.1016/j.jpba.2015.12.003

CAS  Article  PubMed  Google Scholar 

Kahsay G, Song H, van Schepdael A, Cabooter D, Adams E (2014) Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. J Pharm Biomed Anal 87:142–154. https://doi.org/10.1016/j.jpba.2013.04.015

CAS  Article  PubMed  Google Scholar 

Kovalova L, McArdell CS, Hollender J (2009) Challenge of high polarity and low concentration in analysis of cytostatics and metabolites in wastewater by hydrophilic interaction chromatography/tandem mass spectrometry. J Chromatogr A 1216:1100–1108. https://doi.org/10.1016/j.chroma.2008.12.028

CAS  Article  PubMed  Google Scholar 

Onorato JM, Langish R, Bellamine A, Shipkova P (2010) Applications of HILIC for targeted and non-targeted LC/MS analyses in drug discovery. J Sep Sci 33:923–929. https://doi.org/10.1002/jssc.200900659

CAS  Article  PubMed  Google Scholar 

Obradović D, Oljačić S, Nikolić K, Agbaba D (2019) Investigation and prediction of retention characteristics of imidazoline and serotonin receptor ligands and their related compounds on mixed-mode stationary phase. J Chromatogr A 1585:92–104. https://doi.org/10.1016/j.chroma.2018.11.051

CAS  Article  PubMed  Google Scholar 

Nakov N, Petkovska R, Acevska J, Dimitrovska A (2014) Chemometric approach for optimization of HILIC method for simultaneous determination of imipenem and cilastatin sodium in powder for injection. J Liq Chrom Rel Technol 37:447–460. https://doi.org/10.1080/10826076.2012.745149

CAS  Article  Google Scholar 

Boeserma PJ, Divecha N, Heck AJR, Mohammed S (2007) Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res 6:937–946. https://doi.org/10.1021/pr060589m

CAS  Article  Google Scholar 

Voicu V, Sarbu C, Tache F, Micale F, Radulescu SF, Sakurada K, Ohta H, Medvedovici A (2014) Lipophilicity indices derived from the liquid chromatographic behaviour observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes. Talanta 122:172–179. https://doi.org/10.1016/j.talanta.2014.01.048

CAS  Article  PubMed  Google Scholar 

Vallaro M, Ermond G, Caron G (2020) Chromatographic HILIC indexes to characterize the lipophilicity of zwitterions. Eur J Pharm Sci 145:1–8. https://doi.org/10.1016/j.ejps.2020.105232

CAS  Article  Google Scholar 

Essaid D, Chaminade P, Maillard Ph (2015) Lipophilicity of porphyrins and their retention in IAM, C8–C18 and HILIC chromatographic systems. J Pharm Biomed Anal 114:227–240. https://doi.org/10.1016/j.jpba.2015.05.004

CAS  Article  PubMed  Google Scholar 

Cieśla Ł, Hajnos M, Waksmundzka-Hajnos M (2011) Application of hydrophilic interaction TLC systems for separation of highly polar glycosidic compounds from the flowers of selected Verbascum species. J Planar Chromatogr-Mod TLC 24:295–300. https://doi.org/10.1556/jpc.24.2011.4.4

Article  Google Scholar 

Obradovic D, Arsic A, Carapic M, Agbaba D (2020) Modeling of chromatographic retention of the selected antiarrhythmics and structurally related compounds in the hydrophilic interactions under the TLC and HPLC conditions. J Liq Rel Technol 43:328–335. https://doi.org/10.1080/10826076.2020.1725551

CAS  Article  Google Scholar 

Santali E, Edwards D, Sutcliffe OB, Bailes S, Euerby MR, Watson DG (2014) A comparison of silica C and silica gel in HILIC mode. The effect of stationary phase surface area. Chromatographia 77:873–881. https://doi.org/10.1007/s10337-014-2694-9

CAS  Article  Google Scholar 

Peng H, Wang X, Peng J, He Y, Chen Y, Chen F, Li S (2018) Preparation and evaluation of surface-bonded phenylglycine zwitterionic stationary phase. Anal Bioanal Chem 140:5941–5950. https://doi.org/10.1007/s00216-018-1211-7

CAS  Article  Google Scholar 

Bacalum E, Tanase M, Cheregi M, Aboul-Enein HY, David V (2016) Retention mechanism in zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) studied for highly polar compounds under different elution conditions. Rev Roum Chim 61:531–539

Google Scholar 

Karatapanis AE, Fiamegos YC, Stalikas CD (2011) A revisit to the retention mechanism of hydrophilic interaction liquid chromatography using model organic compounds. J Chromatogr A 1218:2871–2879. https://doi.org/10.1016/j.chroma.2011.02.069

CAS  Article  PubMed  Google Scholar 

Jandera P, Hájek T (2017) Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction–reversed-phase liquid chromatography mechanism. J Sep Sci 41:145–162. https://doi.org/10.1002/jssc.201701010

CAS  Article  PubMed  Google Scholar 

Česla P, Vankova N, Krenkova J, Fischer J (2016) Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides. J Chromatogr A 1438:179–188. https://doi.org/10.1016/j.chroma.2016.02.032

CAS  Article  PubMed  Google Scholar 

Pirok WJ, Molenaar SRA, van Outersterp RE, Schoenmakers PJ (2017) Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques. J Chromatogr A 1530:104–111. https://doi.org/10.1016/j.chroma.2016.02.032

CAS  Article  PubMed  Google Scholar 

Snyder LR (1968) Principles of adsorption chromatography. Marcel Dekker, New York

Google Scholar 

Soczewiński E (1969) Solvent composition effects in thin-layer chromatography systems of the type silica gel—electron donor solvent. Anal Chem 41:179–182

Article  Google Scholar 

Snyder LR, Dolan JW (1998) The linear–solvent–strength model of gradient elution. Adv Chromatogr 38:115–187

CAS  Google Scholar 

Regunathan S, Reis DJ (1996) Imidazoline receptors and their endogenious ligands. Annu Rev Pharmacol Toxicol 36:511–544. https://doi.org/10.1146/annurev.pa.36.040196.002455

CAS  Article  PubMed  Google Scholar 

Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Docker C, Mohr P, Höschl C (2006) Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs 20:389–409. https://doi.org/10.2165/00023210-200620050-00004

CAS  Article  PubMed  Google Scholar 

Obradović D, Oljačić S, Nikolić K, Agababa D (2019) Investigation and prediction of retention characteristics of imidazoline and serotonin receptor ligands and their related compounds on mixed-mode stationary phase. J Chromatogr A 1585:92–104. https://doi.org/10.1016/j.chroma.2018.11.051

CAS  Article  PubMed  Google Scholar 

Obradović D, Kowalska T, Agbaba D (2021) Mixed-mode hydrophilic interactions/reversed-phase retention mechanism in thin-layer chromatography. J Chromatogr Sci. https://doi.org/10.1093/chromsci/bmab068

Article  Google Scholar 

Bate-Smith EC, Westall RG (1950) Chromatographic behaviour and chemical structure some naturally occurring phenolic substances. Biochim Biophys Acta 4:427–440. https://doi.org/10.1016/0006-3002(50)90049-7

Article  Google Scholar 

Chem Axon (2013) MarvinSketch 6.1.0. Budapest. http://www.chemaxon.com/

Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comput Chem 10:209–220. https://doi.org/10.1002/jcc.540100209

CAS  Article  Google Scholar 

Stewart JJP (1989) Optimization of parameters for semiempirical methods II. Applications. J Comput Chem 10:221–264. https://doi.org/10.1002/jcc.540100209

CAS  Article  Google Scholar 

Frich MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennuci B, Petersson GA et al (2009) Gaussian 09, Revision D0.1. Gaussian Inc., Wallingford, CT

Google Scholar 

CambridgeSoft Corporation (2013) ChemBio3DUltra, Version 13.0. CambridgeSoft, Corporation, Cambridge, MA

Google Scholar 

Dragon 6, TALETE srl, Via V. Pisani, 13–20124 Milano. http://www.talete.mi.it/

Molinspiration software or free molecular property calculation services, http://www.molinspiration.com/. Accessed 27 June, 2021

Tetko IV. Virtual Computational Chemistry Laboratory. http://www.vcclab.org/. Accessed 27 June, 2020

http://www.acdlabs.com/resources/ilab//http://www.simulations-plus.com//. Accessed 27 June

STATISTICA software,Version 7.0, StatSoft Inc., Tulsa, OK

Wilkinson L (1979) Tests of significance in stepwise regression. Psychol Bull 86:168–174. https://doi.org/10.1037/0033-2909.86.1.168

Article  Google Scholar 

Moriguci I, Hirono S, Liu Q, Nakagome I, Matsushita Y (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull 40:127–130

Article  Google Scholar 

留言 (0)

沒有登入
gif