Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017. https://doi.org/10.3322/caac.21387.

Article  PubMed  Google Scholar 

Dimitriou F, Krattinger R, Ramelyte E, Barysch MJ, Micaletto S, Dummer R, et al. The world of melanoma: epidemiologic, genetic, and anatomic differences of melanoma across the globe. Curr Oncol Rep. 2018. https://doi.org/10.1007/s11912-018-0732-8.

Article  PubMed  Google Scholar 

Chi Z, Li S, Sheng X, Si L, Cui C, Han M, et al. Clinical presentation, histology, and prognoses of malignant melanoma in ethnic Chinese: a study of 522 consecutive cases. BMC Cancer. 2011;11:85. https://doi.org/10.1186/1471-2407-11-85.

Article  PubMed  PubMed Central  Google Scholar 

Prasad V, Kaestner V. Nivolumab and pembrolizumab: monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. Semin Oncol. 2017;44(2):132–5. https://doi.org/10.1053/j.seminoncol.2017.06.007.

CAS  Article  PubMed  Google Scholar 

Olino K, Park T, Ahuja N. Exposing hidden targets: combining epigenetic and immunotherapy to overcome cancer resistance. Semin Cancer Biol. 2020;65:114–22. https://doi.org/10.1016/j.semcancer.2020.01.001.

CAS  Article  PubMed  Google Scholar 

Xiao D, Barry S, Kmetz D, Egger M, Pan J, Rai SN, et al. Melanoma cell-derived exosomes promote epithelial–mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 2016;376(2):318–27. https://doi.org/10.1016/j.canlet.2016.03.050.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP. Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell. 2011;22(14):2423–35. https://doi.org/10.1091/mbc.E11-04-0306.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal. 2015. https://doi.org/10.1126/scisignal.2005825.

Article  PubMed  Google Scholar 

Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs promoting growth and metastasis in preclinical in vivo models of subcutaneous melanoma. Cancer Genomics Proteomics. 2020;17(6):651–67. https://doi.org/10.21873/cgp.20221.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fomeshi MR, Ebrahimi M, Mowla SJ, Khosravani P, Firouzi J, Khayatzadeh H. Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell Mol Biol Lett. 2015;20(3):448–65. https://doi.org/10.1515/cmble-2015-0025.

CAS  Article  PubMed  Google Scholar 

Chen M, Chen C, Luo H, Ren J, Dai Q, Hu W, et al. MicroRNA-296–5p inhibits cell metastasis and invasion in nasopharyngeal carcinoma by reversing transforming growth factor-β-induced epithelial–mesenchymal transition. Cell Mol Biol Lett. 2020;25:49. https://doi.org/10.1186/s11658-020-00240-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang Q, Lv Q, Bian H, Yang L, Guo KL, Ye SS, et al. A novel tumor suppressor SPINK5 targets Wnt/β-catenin signaling pathway in esophageal cancer. Cancer Med. 2019;8(5):2360–71. https://doi.org/10.1002/cam4.2078.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lv Z, Wu K, Qin X, Yuan J, Yan M, Zhang J, et al. A novel tumor suppressor SPINK5 serves as an independent prognostic predictor for patients with head and neck squamous cell carcinoma. Cancer Manag Res. 2020;12:4855–69. https://doi.org/10.2147/cmar.S236266.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Komatsu N, Takata M, Otsuki N, Ohka R, Amano O, Takehara K, et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol. 2002;118(3):436–43. https://doi.org/10.1046/j.0022-202x.2001.01663.x.

CAS  Article  PubMed  Google Scholar 

Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett. 2018;23:12. https://doi.org/10.1186/s11658-018-0078-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lin WH, Chang YW, Hong MX, Hsu TC, Lee KC, Lin C, et al. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis. Oncogene. 2021;40(4):791–805. https://doi.org/10.1038/s41388-020-01566-8.

CAS  Article  PubMed  Google Scholar 

Waitkus MS, Chandrasekharan UM, Willard B, Haque SJ, DiCorleto PE. STAT3-mediated coincidence detection regulates noncanonical immediate early gene induction. J Biol Chem. 2013;288(17):11988–2003. https://doi.org/10.1074/jbc.M112.428516.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Smith CC, Dixon RA, Wynne AM, Theodorou L, Ong SG, Subrayan S, et al. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol. 2010;299(4):H1265–70. https://doi.org/10.1152/ajpheart.00092.2010.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Drzewoski J, Hanefeld M. The current and potential therapeutic use of metformin—the good old drug. Pharmaceuticals (Basel, Switzerland). 2021;14:2. https://doi.org/10.3390/ph14020122.

CAS  Article  Google Scholar 

Chen YC, Li H, Wang J. Mechanisms of metformin inhibiting cancer invasion and migration. Am J Transl Res. 2020;12(9):4885–901.

CAS  PubMed  PubMed Central  Google Scholar 

Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120. https://doi.org/10.1186/s13045-015-0203-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

CAS  Article  Google Scholar 

Dong S, Xiao Y, Ma X, He W, Kang J, Peng Z, et al. miR-193b increases the chemosensitivity of osteosarcoma cells by promoting FEN1-mediated autophagy. Onco Targets Ther. 2019;12:10089–98. https://doi.org/10.2147/ott.S219977.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell. 2013;24(4):466–80. https://doi.org/10.1016/j.ccr.2013.08.018.

CAS  Article  PubMed  Google Scholar 

Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells. 2020;9:1. https://doi.org/10.3390/cells9010217.

CAS  Article  Google Scholar 

Wei Z, Lyu B, Hou D, Liu X. Mir-5100 mediates proliferation, migration and invasion of oral squamous cell carcinoma cells via targeting SCAI. J Invest Surg. 2021;34(8):834–41. https://doi.org/10.1080/08941939.2019.1701754.

Article  PubMed  Google Scholar 

Li CY, Wang YH, Lin ZY, Yang LW, Gao SL, Liu T, et al. MiR-5100 targets TOB2 to drive epithelial–mesenchymal transition associated with activating smad2/3 in lung epithelial cells. Am J Transl Res. 2017;9(10):4694–706.

CAS  PubMed  PubMed Central  Google Scholar 

Roedl D, Oji V, Buters JT, Behrendt H, Braun-Falco M. rAAV2-mediated restoration of LEKTI in LEKTI-deficient cells from Netherton patients. J Dermatol Sci. 2011;61(3):194–8. https://doi.org/10.1016/j.jdermsci.2010.12.004.

CAS  Article  PubMed  Google Scholar 

Li RG, Deng H, Liu XH, Chen ZY, Wan SS, Wang L. Histone methyltransferase G9a promotes the development of renal cancer through epigenetic silencing of tumor suppressor gene SPINK5. Oxid Med Cell Longev. 2021;2021:6650781. https://doi.org/10.1155/2021/6650781.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Alves MG, Kodama MH, da Silva EZM, Gomes BBM, da Silva RAA, Vieira GV, et al. Relative expression of KLK5 to LEKTI is associated with aggressiveness of oral squamous cell carcinoma. Transl Oncol. 2021. https://doi.org/10.1016/j.tranon.2020.100970.

Article  PubMed  Google Scholar 

van Hooff SR, Leusink FK, Roepman P, Baatenburg de Jong RJ, Speel EJ, van den Brekel MW, et al. Validation of a gene expression signature for assessment of lymph node metastasis in oral squamous cell carcinoma. J Clin Oncol 2012. https://doi.org/10.1200/jco.2011.40.4509.

Liu W, Huang G, Yang Y, Gao R, Zhang S, Kou B. Oridonin inhibits epithelial–mesenchymal transition of human nasopharyngeal carcinoma cells by negatively regulating AKT/STAT3 signaling pathway. Int J Med Sci. 2021;18(1):81–7. https://doi.org/10.7150/ijms.48552.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kaptein A, Paillard V, Saunders M. Dominant negative stat3 mutant inhibits interleukin-6-induced Jak-STAT signal transduction. J Biol Chem. 1996;271(11):5961–4. https://doi.org/10.1074/jbc.271.11.5961.

CAS  Article  PubMed  Google Scholar 

Yasuda T, Fukada T, Nishida K, Nakayama M, Matsuda M, Miura I, et al. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Investig. 2016;126(6):2064–76. https://doi.org/10.1172/jci82887.

Article  PubMed  PubMed Central  Google Scholar 

Shaw JL, Diamandis EP. Distribution of 15 human kallikreins in tissues and biological fluids. Clin Chem. 2007;53(8):1423–32. https://doi.org/10.1373/clinchem.2007.088104.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif