The role of bone marrow adipocytes in cancer progression: the impact of obesity

Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V., & Plikus, M. V. (2018). Anatomical, physiological, and functional diversity of adipose tissue. Cell Metabolism, 27(1), 68–83. https://doi.org/10.1016/j.cmet.2017.12.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Duong, M. N., Geneste, A., Fallone, F., Li, X., Dumontet, C., & Muller, C. (2017). The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget, 8(34), 57622–57641. https://doi.org/10.18632/oncotarget.18038

Lengyel, E., Makowski, L., DiGiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends in Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Attané, C., & Muller, C. (2020). Drilling for oil: Tumor-surrounding adipocytes fueling canceR. Trends in Cancer, 6(7), 593–604. https://doi.org/10.1016/j.trecan.2020.03.001

CAS  Article  PubMed  Google Scholar 

Morigny, P., Boucher, J., Arner, P., & Langin, D. (2021). Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nature Reviews. Endocrinology, 17(5), 276–295. https://doi.org/10.1038/s41574-021-00471-8

CAS  Article  PubMed  Google Scholar 

Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature Reviews. Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fasshauer, M., & Blüher, M. (2015). Adipokines in health and disease. Trends in Pharmacological Sciences, 36(7), 461–470. https://doi.org/10.1016/j.tips.2015.04.014

CAS  Article  PubMed  Google Scholar 

Calle, E. E., Rodriguez, C., Walker-Thurmond, K., & Thun, M. J. (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. The New England Journal of Medicine, 348(17), 1625–1638. https://doi.org/10.1056/NEJMoa021423

Article  PubMed  Google Scholar 

Renehan, A. G., Zwahlen, M., & Egger, M. (2015). Adiposity and cancer risk: New mechanistic insights from epidemiology. Nature Reviews. Cancer, 15(8), 484–498. https://doi.org/10.1038/nrc3967

CAS  Article  PubMed  Google Scholar 

Kahn, C. R., Wang, G., & Lee, K. Y. (2019). Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. The Journal of Clinical Investigation, 129(10), 3990–4000. https://doi.org/10.1172/JCI129187

Article  PubMed  PubMed Central  Google Scholar 

Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., … & Lengyel, E. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://doi.org/10.1038/nm.2492

Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica Et Biophysica Acta, 1831(10), 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ye, H., Adane, B., Khan, N., Sullivan, T., Minhajuddin, M., Gasparetto, M., … & Jordan, C. T. (2016). Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell, 19(1), 23–37. https://doi.org/10.1016/j.stem.2016.06.001

Macedo, F., Ladeira, K., Pinho, F., Saraiva, N., Bonito, N., Pinto, L., & Goncalves, F. (2017). Bone metastases: An overview. Oncology Reviews, 11(1), 321. https://doi.org/10.4081/oncol.2017.321

CAS  Article  PubMed  PubMed Central  Google Scholar 

Scheller, E. L., Cawthorn, W. P., Burr, A. A., Horowitz, M. C., & MacDougald, O. A. (2016). Marrow adipose tissue: Trimming the fat. Trends in endocrinology and metabolism: TEM, 27(6), 392–403. https://doi.org/10.1016/j.tem.2016.03.016

CAS  Article  PubMed  Google Scholar 

Cawthorn, W. P., & Scheller, E. L. (2017). Editorial: Bone marrow adipose tissue: Formation, Function, and impact on health and disease. Frontiers in Endocrinology, 8, 112. https://doi.org/10.3389/fendo.2017.00112

Article  PubMed  PubMed Central  Google Scholar 

Li, Z., Hardij, J., Bagchi, D. P., Scheller, E. L., & MacDougald, O. A. (2018). Development, regulation, metabolism and function of bone marrow adipose tissues. Bone, 110, 134–140. https://doi.org/10.1016/j.bone.2018.01.008

CAS  Article  PubMed  PubMed Central  Google Scholar 

Neumann E. (1882). Das Gesetz der Verbreitung des Gelben und rotten Knochenmaarkes. Zentralbl Med Wissensch., pp. 321–323.

Tavassoli, M. (1976). Marrow adipose cells. Histochemical identification of labile and stable components. Archives of Pathology & Laboratory Medicine, 100(1), 16–18.

CAS  Google Scholar 

Scheller, E. L., Doucette, C. R., Learman, B. S., Cawthorn, W. P., Khandaker, S., Schell, B., … & MacDougald, O. A. (2015). Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nature Communications, 6(1), 7808. https://doi.org/10.1038/ncomms8808

Styner, M., Pagnotti, G. M., McGrath, C., Wu, X., Sen, B., Uzer, G., … & Rubin, J. (2017). Exercise decreases marrow adipose tissue through ß-oxidation in obese running mice: Exercise decreases mat in obese mice. Journal of Bone and Mineral Research, 32(8), 1692–1702. https://doi.org/10.1002/jbmr.3159

Scheller, E. L., Khandaker, S., Learman, B. S., Cawthorn, W. P., Anderson, L. M., Pham, H. A., … & MacDougald, O. A. (2019). Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone, 118, 32–41. https://doi.org/10.1016/j.bone.2018.01.016

Robles, H., Park, S., Joens, M. S., Fitzpatrick, J. A. J., Craft, C. S., & Scheller, E. L. (2019). Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone, 118, 89–98. https://doi.org/10.1016/j.bone.2018.01.020

Article  PubMed  Google Scholar 

Tratwal, J., Labella, R., Bravenboer, N., Kerckhofs, G., Douni, E., Scheller, E. L., … Naveiras, O. (2020). Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 11, 65. https://doi.org/10.3389/fendo.2020.00065

Cawthorn, W. P., Scheller, E. L., Learman, B. S., Parlee, S. D., Simon, B. R., Mori, H., … & MacDougald, O. A. (2014). Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metabolism, 20(2), 368–375. https://doi.org/10.1016/j.cmet.2014.06.003

Justesen, J., Stenderup, K., Ebbesen, E. N., Mosekilde, L., Steiniche, T., & Kassem, M. (2001). Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2(3), 165–171. https://doi.org/10.1023/a:1011513223894

CAS  Article  PubMed  Google Scholar 

Kricun, M. E. (1985). Red-yellow marrow conversion: Its effect on the location of some solitary bone lesions. Skeletal Radiology, 14(1), 10–19. https://doi.org/10.1007/BF00361188

CAS  Article  PubMed  Google Scholar 

Blebea, J. S., Houseni, M., Torigian, D. A., Fan, C., Mavi, A., Zhuge, Y., … & Alavi, A. (2007). Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Seminars in Nuclear Medicine, 37(3), 185–194. https://doi.org/10.1053/j.semnuclmed.2007.01.002

Kugel, H., Jung, C., Schulte, O., & Heindel, W. (2001). Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. Journal of magnetic resonance imaging: JMRI, 13(2), 263–268. https://doi.org/10.1002/1522-2586(200102)13:2%3c263::aid-jmri1038%3e3.0.co;2-m

CAS  Article  PubMed  Google Scholar 

Pansini, V., Monnet, A., Salleron, J., Hardouin, P., Cortet, B., & Cotten, A. (2014). 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex. Journal of magnetic resonance imaging: JMRI, 39(2), 369–376. https://doi.org/10.1002/jmri.24176

Article  PubMed  Google Scholar 

Griffith, J. F., Yeung, D. K. W., Ma, H. T., Leung, J. C. S., Kwok, T. C. Y., & Leung, P. C. (2012). Bone marrow fat content in the elderly: A reversal of sex difference seen in younger subjects. Journal of magnetic resonance imaging: JMRI, 36(1), 225–230. https://doi.org/10.1002/jmri.23619

Article  PubMed  Google Scholar 

Suchacki, K. J., Tavares, A. A. S., Mattiucci, D., Scheller, E. L., Papanastasiou, G., Gray, C., … & Cawthorn, W. P. (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications, 11(1), 3097. https://doi.org/10.1038/s41467-020-16878-2

Lucas, S., Tencerova, M., von der Weid, B., Andersen, T. L., Attané, C., Behler-Janbeck, F., … & van der Eerden, B. C. J. (2021). Guidelines for biobanking of bone marrow adipose tissue and related cell types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 12, 744527. https://doi.org/10.3389/fendo.2021.744527

Attané, C., Estève, D., Moutahir, M., Reina, N., & Muller, C. (2021). A protocol for human bone marrow adipocyte isolation and purification. STAR protocols, 2(3), 100629. https://doi.org/10.1016/j.xpro.2021.100629

Article  PubMed  PubMed Central  Google Scholar 

Attané, C., Estève, D., Chaoui, K., Iacovoni, J. S., Corre, J., Moutahir, M., … & Muller, C. (2020). Human bone marrow is comprised of adipocytes with specific lipid metabolism. Cell Reports, 30(4), 949-958.e6. https://doi.org/10.1016/j.celrep.2019.12.089

Zechner, R. (2015). FAT FLUX: Enzymes, regulators, and pathophysiology of intracellular lipolysis. EMBO molecular medicine, 7(4), 359–362. https://doi.org/10.15252/emmm.201404846

Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., … & Bouxsein, M. L. (2010). Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 25(9), 2078–2088. https://doi.org/10.1002/jbmr.82

Bathija, A., Davis, S., & Trubowitz, S. (1979). Bone marrow adipose tissue: Response to acute starvation. American Journal of Hematology, 6(3), 191–198. https://doi.org/10.1002/ajh.2830060303

CAS  Article  PubMed  Google Scholar 

Tavassoli, M. (1974). Differential response of bone marrow and extramedullary adipose cells to starvation. Experientia, 30(4), 424–425. https://doi.org/10.1007/BF01921701

CAS  Article  PubMed  Google Scholar 

Abella, E., Feliu, E., Granada, I., Millá, F., Oriol, A., Ribera, J. M., … & Rozman, C. (2002). Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. American Journal of Clinical Pathology, 118(4), 582–588. https://doi.org/10.1309/2Y7X-YDXK-006B-XLT2

Bredella, M. A., Torriani, M., Ghomi, R. H., Thomas, B. J., Brick, D. J., Gerweck, A. V., … & Miller, K. K. (2011). Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity, 19(1), 49–53. https://doi.org/10.1038/oby.2010.106

Cawthorn, W. P., Scheller, E. L., Parlee, S. D., Pham, H. A., Learman, B. S., Redshaw, C. M. H., … & MacDougald, O. A. (2016). Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology, 157(2), 508–521. https://doi.org/10.1210/en.2015-1477

Ghali, O., Al Rassy, N., Hardouin, P., & Chauveau, C. (2016). Increased bone marrow adiposity in a context of energy deficit: The tip of the iceberg? Frontiers in Endocrinology, 7, 125. https://doi.org/10.3389/fendo.2016.00125

Article  PubMed  PubMed Central  Google Scholar 

Bartelt, A., Koehne, T., Tödter, K., Reimer, R., Müller, B., Behler-Janbeck, F., … & Niemeier, A. (2017). Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. International Journal of Molecular Sciences, 18(6), E1264. https://doi.org/10.3390/ijms18061264

Ojala, R., Motiani, K. K., Ivaska, K. K., Arponen, M., Eskelinen, J.-J., Virtanen, K. A., & Hannukainen, J. C. (2020). Bone marrow metabolism is impaired in insulin resistance and improves after exercise training. The Journal of Clinical Endocrinology and Metabolism, 105(12), dgaa516. https://doi.org/10.1210/clinem/dgaa516

Article  PubMed  Google Scholar 

Kozubík, A., Sedláková, A., Pospísil, M., & Petrásek, R. (1988). In vivo studies of the relationship between the activation of lipid metabolism, postirradiation bone marrow cell proliferation and radioresistance of mice. General Physiology and Biophysics, 7(3), 293–302.

PubMed  Google Scholar 

Pham, T. T., Ivaska, K. K., Hannukainen, J. C., Virtanen, K. A., Lidell, M. E., Enerbäck, S., … Kiviranta, R. (2020). Human bone marrow adipose tissue is a metabolically active and insulin-sensitive distinct fat depot. The Journal of Clinical Endocrinology and Metabolism, 105(7), dgaa216. https://doi.org/10.1210/clinem/dgaa216

Zechner, R., Madeo, F., & Kratky, D. (2017). Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nature Reviews. Molecular Cell Biology, 18(11), 671–684. https://doi.org/10.1038/nrm.2017.76

CAS  Article  PubMed  Google Scholar 

Sulston, R. J., & Cawthorn, W. P. (2016). Bone marrow adipose tissue as an endocrine organ: Close to the bone? Hormone Molecular Biology and Clinical Investigation, 28(1), 21–38. https://doi.org/10.1515/hmbci-2016-0012

CAS  Article  PubMed  Google Scholar 

Scheller, E. L., Burr, A. A., MacDougald, O. A., & Cawthorn, W. P. (2016). Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte, 5(3), 251–269. https://doi.org/10.1080/21623945.2016.1149269

CAS 

留言 (0)

沒有登入
gif